SOIL AND INDOOR RADON CONNECTION IN STEI-BAITA AREA (ROMANIA)

C. Cosma¹, <u>B. Papp¹</u>, D.C. Nită¹, A. Dinu¹, R. Begy¹, C. Sainz²

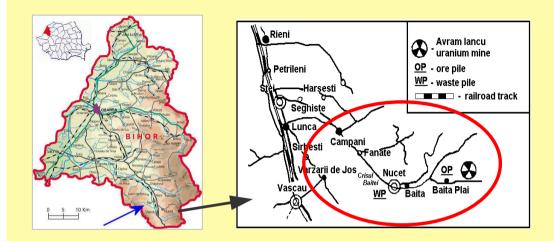
¹ Faculty of Environmental Science, "Babeş-Bolyai" University, Cluj-Napoca, Romania
² Department of Medical Physics, Faculty of Medicine, Univ. of Cantabria, Santander, Spain

Introduction

- I. Methods of soil radon measurements
- II. Special method of soil permeability measurements
- III. Preliminary results of soil radon and permeability measurements in Stei-Baita area
- **IV.** Conclusions
- V. About the IRART project

10th INTERNATIONAL WORKSHOP on the GEOLOGICAL ASPECTS OF RADON RISK MAPPING, September 22-25, 2010 Prague, Czech Republic

INTRODUCTION. Some results about indoor radon measurements in

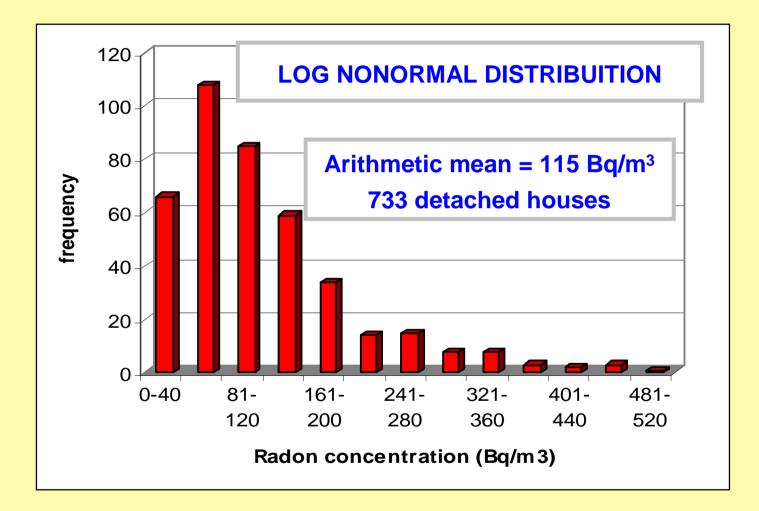

Transilvania, focusing to Stei (Bihor) area

 TOTAL PERIOD OF 2003-2010: 1702 RADON MEASUREMENTS BY TRACK DETECTORS CR-39
2009-2010: 389 RADON MEASUREMENTS BY TRACK DETECTORS CR-39 ARE PERFORMED AND IN PROGRESS IN CLUJ, BISTRITA, ALBA AND MURES COUNTY

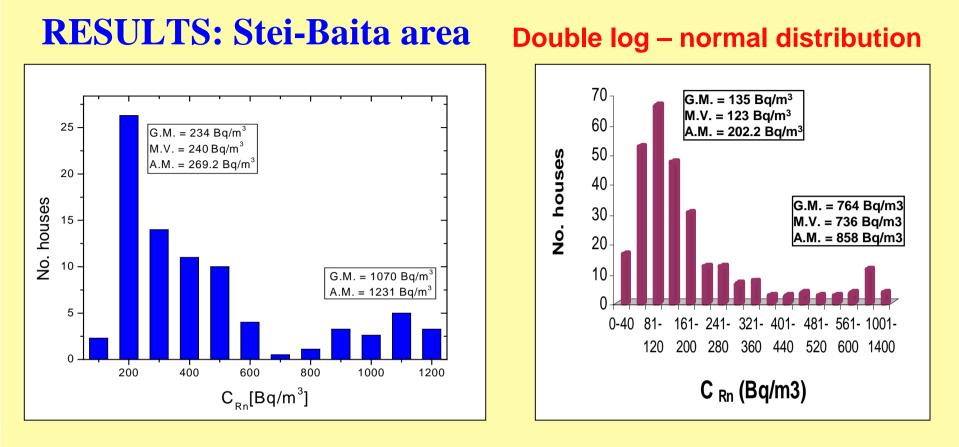
Lisotopes in Environmental and Health Studies Ukraine N MARE MARAMURES 3	District	Nr of the investigated houses	A.M. [Bq/m³]	Range [Bq/m³]	Investigation season
BIHOR SALLA MAREA BISTRITA NASAU BIHOR CLUJ MUREE HARGHTA	Cluj	350	126	20-690	Summer- winter
ARAD ALBA SIBIU BRALOV COVASINA	Bihor (Stei)*	209	129	25-1005	Summer- winter
Serbia Black Sea	Bihor (Băița)	580	247	15-3998	All seasons
Bulgaria 0 200 400	Bistrita	120	69	18-293	Spring- summer
kilometers Figure 1. Map of Romania with Tansylvanian counties (the surveyed counties are warked in grey).	Sibiu	45	86	15-234	Spring- winter
Current	Alba	9	87	27-303	Spring- winter
measurements 2010	Total	1313	124	15-3998	All seasons

IN BIHOR DISTRICT WAS IDENTIFICATED A ZONE BY MUCH HIGHER RADON CONCENTRATIONS FROM ROMANIA

BIHOR, zone of the uranium mine in Ştei-Băița: Integrated radon measurements: 2003 - 2008



Some houses built by uranium waste from mines Baita Plai and Avram Iancu


Nr of the investig	580				
A.M. [Bq/m ³]	247				
Median [Bq/m ³]	116				
G.M. [Bq/m³]	121				
G.S.D. [Bq/m ³]	2.26				
Range (Min-Max)	10 - 3998				
% of the houses	0 - 99	36 %			
by radon concentrations between intervals [Bq/m ³]	100 - 199	34 %			
	200 - 399	17 %			
	400 - 599	4 %			
	600 - 799	3 %			
	800 - 1000	2 %			
	1000 - 3988	4 %			

THIS ZONE WAS CATEGORIZED AS "RADON-PRONE AREA", ACCORDING TO THE INTERNATIONAL CRITERIA FOR RADON EXPOSURE. (over 13 % of houses have radon concentration value highest that 400 Bq/m³).

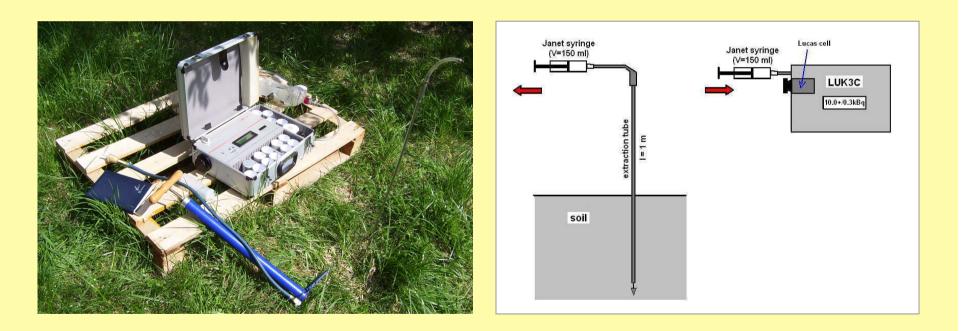
RESULTS: Region of Transylvania

This distribution excluded the values obtained in Baita Stei area.

Lucas cell-grab sample

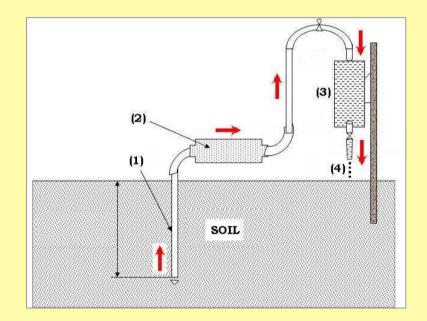
(C. Cosma and Gh. Sandor, 1998)

CR-39 track detectors: 2003 - 2007 -integrated measurements-(580 detached houses)


(C.Cosma et al. 2009)

This double Log Normal distribution means that there are two independent sources of indoor radon: soil and normal building material (first maximum) and the second is coming from uranium waste used in building constructions.

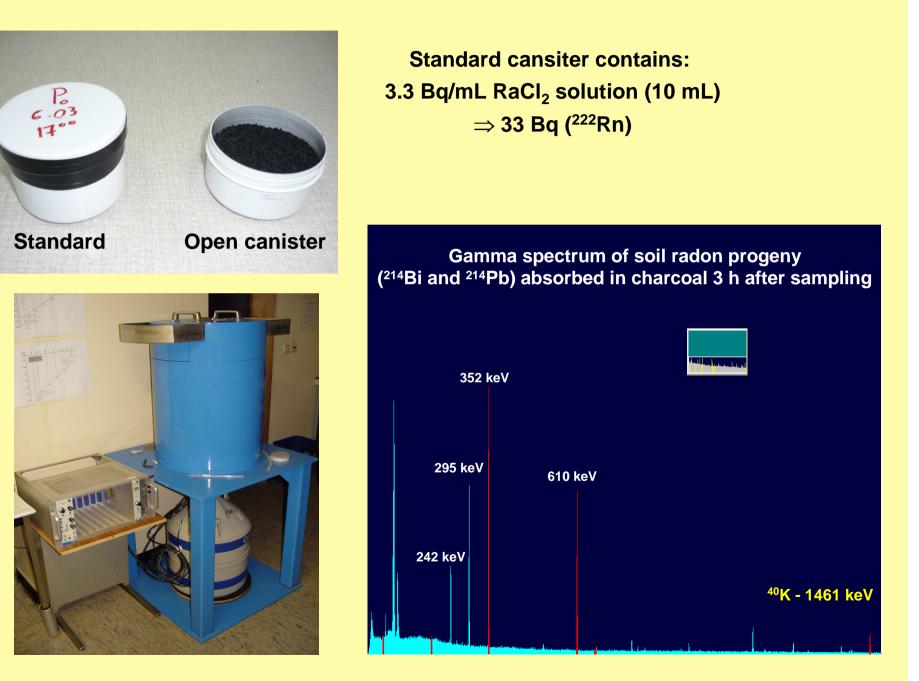
I. METHODS OF SOIL RADON MEASUREMENTS


A. <u>LUK 3C</u>: - scintillation detection with Lucas cell(145 mL);

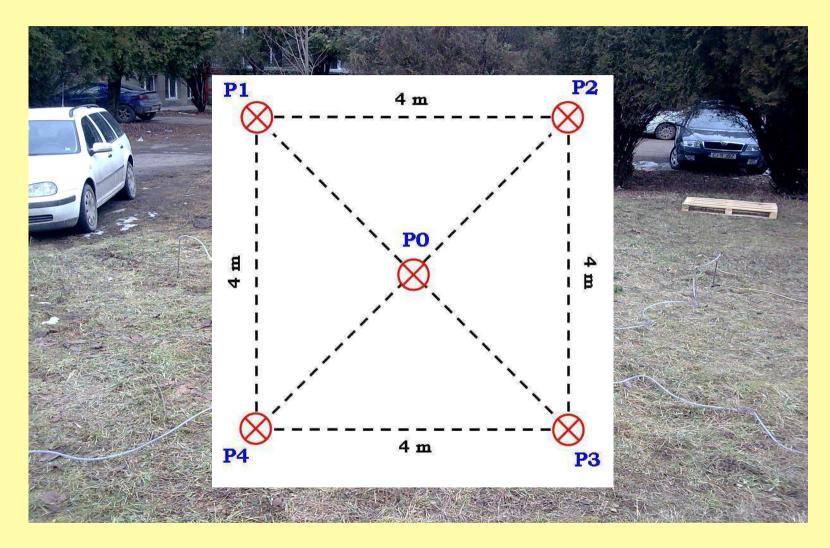

- determines Rn concentration directly from ²²²Rn decay;
- detection efficiency: 2.2 counts /sec/ 1 Bq;
- sampling of soil gas: by Janet syringe (150 mL);
- sampling tube: h = 1m; d = 7 mm; $D \approx 80 cm$;
- measuring time: ≈ 15 min / measurement;

B. Active charcoal (passive pumping)

- (1) Sampling tube: h = 1m; d = 7 mm; $D \approx 80 cm$;
- (2) Active charcoal: m= 50 gr;
- (3) Plastic bottle: V=1.45 L;
- (4) Tap, for water flow out.



Soil radon potential (H) H = F (C , t_s)


Advantages: - very simple;

- not power supply necessary;
- indication of the permeability (empty time);
- can be developed for soil radon potential

B1. Calibration of the active charcoal method

Impoving the sampling: Simultaneously extraction from 5 points (a square with a side of 4 m)

The method and results published in: Acta Geophysica, Cosma et al, 2010

C. Method by track detectors (CR 39):

- closed in bore-hole at $h \approx 40$ cm depth and diameter $d \approx 10$ cm;
- exposure time \approx 1 or 2 days;

Exposition		Measurement results				
		CR 39		LUK3C		
		Rn conc	Avorago	Rn conc	Avorago	
Start	Stop	Time [hour]	[kBq/m ³]	Average [kBq/m³]	[kBq/m ³]	Average [kBq/m ³]
04.00	31.08. 13:0002.09. 15:00	50	16.8	14.9 ± 1.2	16.2 ± 0.4	13.6 ± 0.3
			14.7		12.5 ± 0.4	
13.00			13.3		12.1 ± 0.5	
00.00		9. 122	15.5	17.7 ± 1.5	12.7 ± 0.7	
02.09. 15:30	07.09. 17:30		17.8		9.0 ± 0.6	$\textbf{10.6} \pm \textbf{0.4}$
15.50 17.50		19.9		10.2 ± 0.6		

III. PRELIMINARY RESULTS OF SOIL RADON AND PERMEABILITY MEASUREMENTS IN STEI-BAITA AREA (in 4th of september 2010)

- a. Radon concentration measurements by Lucas cell and active charcoal;
- b. Soil permeability measurements by the special method;
- c. ²²⁶Ra and ²¹⁰Pb concentration measurements by gamma spectrometry from collected soil samples;

Place	Depth [cm]	Rn conc [Bq/m³]	t _{flow} [sec]	K·10 ⁻¹² [m ²]	²¹⁰ Pb [Bq/kg]	²²⁶ Ra [Bq/kg]
Stei (1)	80	44.1 ± 1.9	80	1.8	53	55
	80	40.2 ± 1.9	56	2.7		
	60	22.3 ± 1.0	14	11.6		
Lunca Stei (2)	60	26.1 ± ??	180	0.8		
Campani (3)	70	53.5 ± 2.6	18	8.9	105	70
	70	54.5 ± 2.6	14	11.6		
	70	63.4 ± 2.9	14	11.6		
Fanate (4)	60	58.1 ± 2.7	200	0.7	-	-
Nucet – Popas (5)	50	61.3 ± 2.8	20	7.9	-	-
Nucet - Cris Baita (7)	70	27.1 ± 1.3	12	13.7	72	52
Baita Plai (8)	40	462.9 ± 13.3	13	12.5	351	852
	40	398.5 ± 12	17	9.4		
	40	446.1 ± 13	15	10.7		
Nucet (waste) (6)	80	2.9 ± 0.4	32	4.8	-	-
	80	5.7 ± 0.5	30	5.2		

- at Campani (3c), the Rn measurement by active charcoal method give a value of 62.1 \pm 2.5 kBq/m³

IV. CONCLUSIONS

• From the indoor measurements, the Stei-Baita area can be categorized as "RADON-PRONE AREA". (Over 13 % of houses have radon concentration value highest than 400 Bq/m³).

• From the 580 measurements performed in houses, the trend of the results has a double log normal distribution, caused by two main independent sources: soil and normal building material, and the second is coming from uranium waste used in building constructions.

• The three methods for soil measurements were inter-comparated, and the results have good correlations.

• The new applied method for permeability measurements is in good correlation with the Radon-Jok permeameter, and this method can be developed for radon potential measurements (multi point extraction).

• Based on preliminary soil radon measurements in Stei-Baita area (at the measured depth), the results show a high radon risk.

- the team -

- measurements and workers -

- at the entrence of the Baita Plai uranium mine -

- the older building of the Baita Plai uranium mine -

- very high value of the measured gamma dose -

SECTORAL OPERATIONAL PROGRAMME "INCREASE OF ECONOMIC COMPETITIVENESS" PRIORITY AXIS 2 – Research, Technological Development and Innovation for Competitiveness

Operation 2.1.2: " Complex research projects fostering the participation of high-level international experts"

IMPLEMENTATION OF RADON REMEDIATION TECHNIQUES IN DWELLINGS OF BĂIȚA URANIUM MINE AREA/ IRART

Project POS CCE ID 586 - SMIS 12487/ 160/ 15.06.2010 The European Regional Development Fund

IMPLEMENTATION PERIOD: *15 JUNE 2010 - 15 JULY 2013* **BUDGET:** 1 192 000 EURO

Objective: DEVELOPMENT OF EFFICIENT MITIGATION SOLUTIONS AGAINST POPULATION EXPOSURE TO RADON THROUGH INNOVATIVE RESEARCH WITH INTERNATIONAL COOPERATION

the pilot house as a working prototype of a construction solution for protection against radon emissions

implementation of mitigation solutions in the 20 selected houses

Project Manager: Prof. Univ. Dr. Carlos SAINZ, CANTABRIA UNIVERSITY, Santander, Spain

Co-Director of Project: Prof. Univ. Dr. Constantin COSMA, BABEŞ-BOLYAI UNIVERSITY, Romania

Responsible of Project: Dr. Ing. Alexandra DINU, BABEŞ-BOLYAI UNIVERSITY, Romania

CONTACT: WWW.irart.ro

BABEŞ-BOLYAI UNIVERSITY

Faculty of Environmental Science

IRART

Fântânele 30, 400294 Cluj-Napoca Romania

Tel: 004-0264-307030 Fax: 004-0264-307032 E-mail: <u>sainzc@unican.es</u>

constantin.cosma@ubbcluj.ro

alexandra.dinu@ubbcluj.ro

