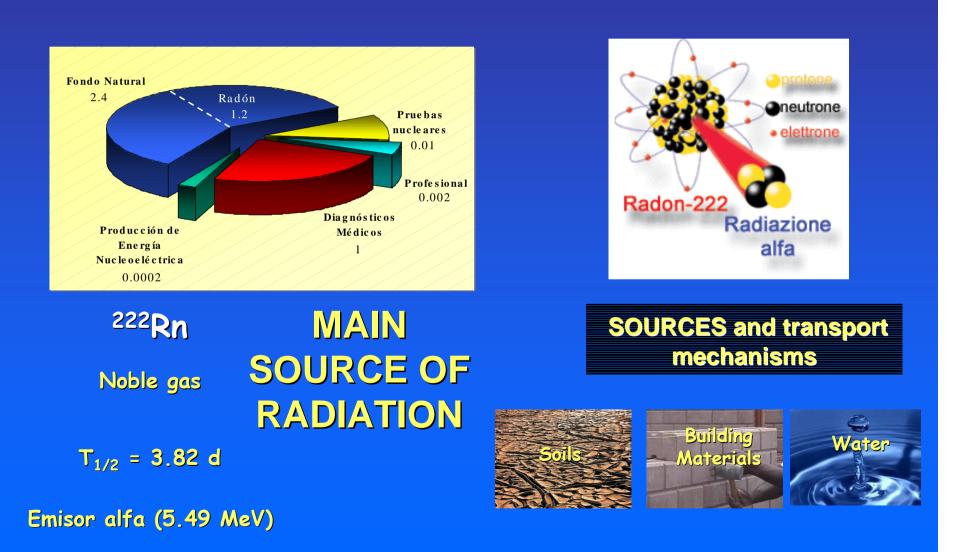
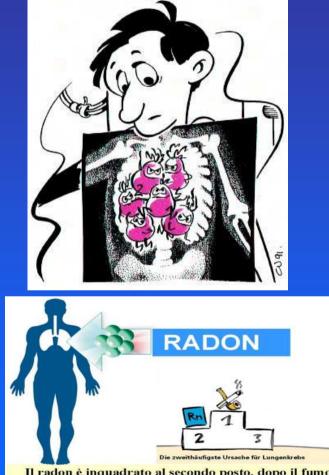


Radon and geology in Spain: Past, present and future


Fuente Merino, I; Sainz Fernandez, C.; Gutierrez Villanueva J.L.; Quindos Lopez, L.; Quindos Poncela, L.S.

Radon Group


Universidad de Cantabria

Santander, Cantabria, Spain

UNIVERSIDAD DE CANTABRIA

Il radon è inquadrato al secondo posto, dopo il fumo, come causa per l'insorgenza di tumori polmonari. (foto: Radon, Ufficio federale d. smita pubblica di Berna, CH).

RADON PROGENY INHALATION

LUNG CANCER RISK Others ?

Increase in risk of lung cancer:

16% por 100 Bq/m3 95% Cl (5, 31)

after correction for the dilution due to random year-to-year variability in residential radon concentrations, as well stratification for study, age, sex, broad region of residence within study, and detailed smoking history. (Darby el al. 2006)

INTERNATIONAL RADON PROJECT (WHO, 2005 - 2009)

RADON CONCENTRATION MAY PRESENT VARIATIONS

- OF 3 ORDERS OF MAGNITUDE

- FROM ONE BUILDING TO ANOTHER

- FROM ONE AREA TO ANOTHER

... SO MEASUREMENT CAMPAINGS ARE ESSENTIAL

SPAIN: WHAT WE KNOW

RADON MEASUREMENTS : MAIN RESULTS FROM THE NATIONAL SURVEY (1989-1991)

>NUMBER OF DWELLINGS SURVEYED: 2,000

>ABOUT 500 CITIES AND VILLAGES

>POPULATED WEIGHTED GEOMETRIC MEAN 45 Bq/m³; G.S.D.:2.7

> PERCENTAGE OF DWELLINGS ABOVE 400 Bq/m³ : 2%

>HIGHEST VALUE: 15,400 Bq/m³

AREAS WITH HIGH RADON INDOOR VALUES HAVE BEEN IDENTIFIED, IN THE CENTER AND THE WEST OF THE COUNTRY

SPAIN: WHAT WE KNOW

> 400 Bq/m³

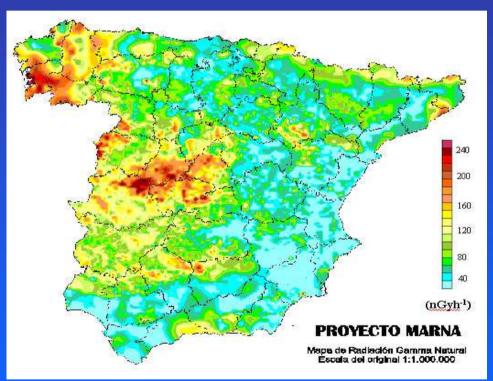
SPAIN: WHAT WE KNOW

> 200 Bq/m³

SPAIN: WHAT WE KNOW

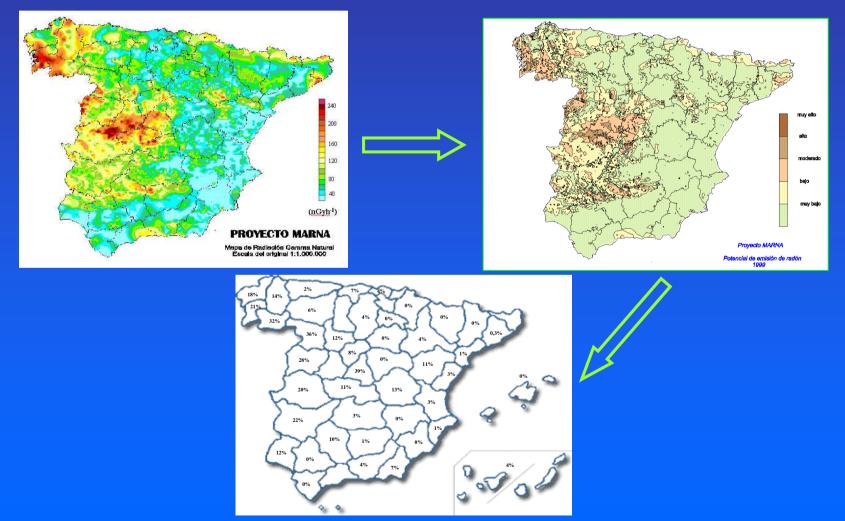
NATURAL RADIATION MAP (MARNA Project) (1991-)

NAN ONGOING PROJECT THAT IS BEING CARRIED OUT BY THE CSN, THE URANIUM NATIONAL COMPANY, SOME UNIVERSITIES AND AUTONOMOUS COMUNITIES.


©CURRENTLY IS IN THE LAST PHASE. THIS PROJECT PROVIDES US MAPS OF THE COUNTRY WHERE THE ZONES WITH DIFFERENT GAMMA RADIATION LEVELS ARE SHOWED.

1.500.000 nationwide terrestrial gamma radiation values

1320 nationwide activity concentration data of ⁴⁰K, ²²⁶Ra, y ²³²Th in soil.


SPAIN: WHAT WE KNOW

"NATURAL GAMMA RADIATION MAP (MARNA) AND INDOOR RADON LEVELS IN SPAIN" Environment International, 29 (8), 1091-96, 2004

SPAIN: WHAT WE KNOW

SPAIN: WHAT WE KNOW

RADON MEASUREMENTS:

REGIONAL SURVEYS

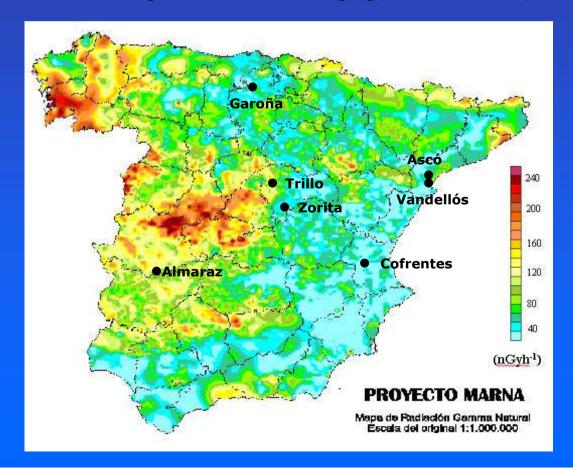
.- NUCLEAR POWER STATIONS

.- OLD URANIUM MINING

.- LOS ARRIBES DEL DUERO

-- SIERRA DE GUADARRAMA

.- VILLAR DE LA YEGUA


SPAIN: WHAT WE KNOW

RADON MEASUREMENTS: REGIONAL SURVEYS

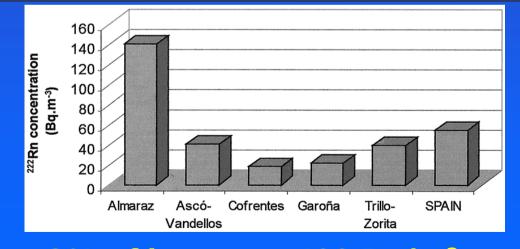
.- NUCLEAR POWER STATIONS

NATURAL RADIATION EXPOSURE IN THE VICINITY OF SPANISH NUCLEAR POWER STATIONS Health Physics, Vol 85(5), 594-598,2003

NATURAL RADIATION EXPOSURE IN THE VICINITY OF SPANISH NUCLEAR POWER STATIONS Health Physics, Vol 85(5), 594-598,2003

 Table 2. External gamma radiation (outdoors).

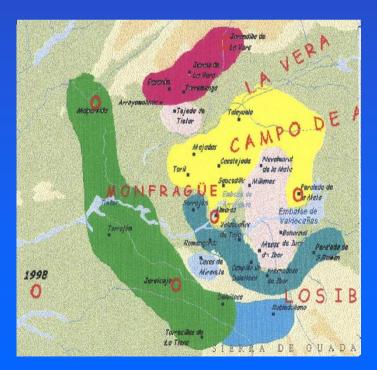
		Almaraz	Asco Vandellos	Cofrentes	Garoña	Trillo	Zorita
External gamma radiation	Geometric mean	79.8	38.1	30.3	31.5	36.2	32.5
(outdoor) (nGy h^{-1})	G.S.D.	1.6	1.5	1.5	1.4	1.5	1.5
	Range	36.0-211.0	18.9-83.6	9.2-73.2	16.2-66.7	10.8-69.4	8.7-62.2
	Arithmetic mean	88.9	40.9	32.7	33.4	38.6	34.8
	A.S.D.	44.6	16.4	12.9	11.8	13.3	12.1


Table 3. External gamma radiation (indoors).

		Almaraz	Asco Vandellos	Cofrentes	Garoña	Trillo	Zorita
External gamma radiation	Geometric Mean	119.1	46.1	36.6	38.5	52.5	42.9
(indoor) (nGy h^{-1})	G.S.D.	1.6	1.5	1.4	1.4	1.5	1.4
	Range	54-313.1	22.2-97.4	20.3-82.1	20.6-82.2	17.2 - 100.1	17.2-87.1
	Arithmetic mean	133.2	49.4	39.1	40.8	55.9	45.0
	A.S.D.	67.5	19.6	15.2	14.4	19.1	14.0

NATURAL RADIATION EXPOSURE IN THE VICINITY OF SPANISH NUCLEAR POWER STATIONS Health Physics, Vol 85(5), 594-598,2003

Table 1. Radon concentrations (Bq m ⁻³).							
	Almaraz	Asco-Vandellos	Cofrentes	Garoña	Trillo	Zorita	
Geometric mean G.S.D. Range Arithmetic mean A.S.D.	93.9 2.4 22.0–640.0 141.9 147.0	31.8 2.1 8.0–214.0 42.5 40.4	13.8 2.1 5.0–61.0 17.9 14.3	22.6 1.6 9.0–50.0 24.9 11.3	34.5 1.8 12.0–116.0 41.3 26.1	30.2 1.7 12.0–62.0 36.2 15.2	


3% of houses > 400 Bq/m³

"NATURAL RADIATION EXPOSURE IN THE VICINITY OF THE SPANISH NUCLEAR POWER STATIONS. SPECIFIC STUDY OF CAMPO ARAÑUELO (CÁCERES, SPAIN)"

Journal of Environmental Radioactivity, Vol 79, 347-54, 2005

"NATURAL RADIATION EXPOSURE IN THE VICINITY OF THE SPANISH NUCLEAR POWER STATIONS. SPECIFIC STUDY OF CAMPO ARAÑUELO (CÁCERES, SPAIN)"

Journal of Environmental Radioactivity, Vol 79, 347-54, 2005

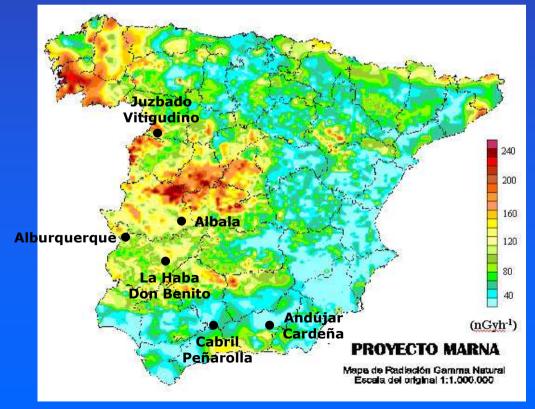
STUDY	A.M. (Bq/m ³)	G.M. (Bq/m ³)	PERC ENTA GE >200 Bu/m ³	PERC ENTA GE > 400 Bu/m ³	N° OF MEAS.
TOTAL CAMIFO ARAÑUELO	87.6	65.7	7.2	2.7	349
NORTHERN ZONE	168.6	113.9	23.6	9.0	55

La Vera: 6 mSv/y

La Vera, 9 % of houses > 400 Bq/m³.

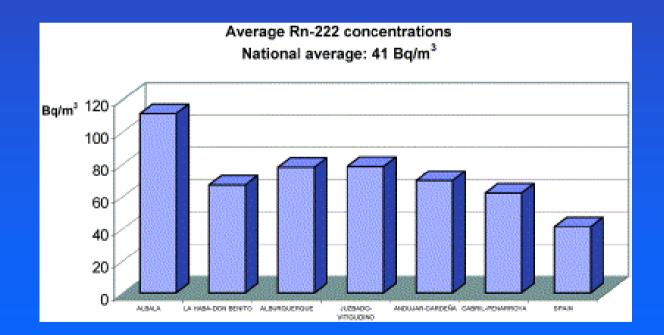
Jarandilla: 25 mSv/y

30 % of houses > 400 Bq/m^{3.}


SPAIN: WHAT WE KNOW

RADON MEASUREMENTS: REGIONAL SURVEYS

.- OLD URANIUM MINING



POPULATION DOSE IN THE VICINITY OF OLD SPANISH URANIUM MINES The Science of th Total Environment, vol 329, 1-3, 283-288, 2004

POPULATION DOSE IN THE VICINITY OF OLD SPANISH URANIUM MINES The Science of th Total Environment, vol 329, 1-3, 283-288, 2004

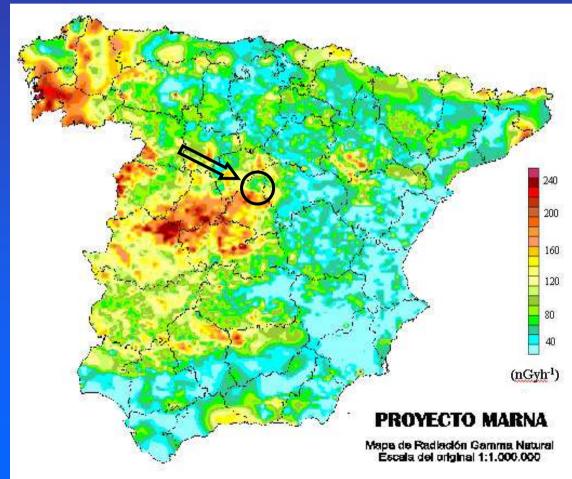
POPULATION DOSE IN THE VICINITY OF OLD SPANISH URANIUM MINES The Science of th Total Environment, vol 329, 1-3, 283-288, 2004

	Arithmetic	Arithmetic	Geometric	Geometric	Range	Percentage
	mean	S.D.	mean	S.D.	(Bq m ⁻³)	>200
	(Bq m ⁻³)	(Bq m ⁻³)	(Bq m ⁻³)			$({\rm B} {\rm g} {\rm m}^{-3})$
Albala (26) 🔇	164,4	159.0	111.2	2,5	31-679	26,9
La Haba-Don	94.3	75,7	66.9	2.4	13 - 273	11.1
Benito (27)						
Alburquerque (31)	101.5	84,3	77.9	2.1	18358	16.1
Juzbado	116.3	124.9	78,3	2.4	11-627	17.0
-Vitigudino (58)						
Andujar	100,9	99.2	69.6	2,3	14-355	16,7
-Cardeña (48)						_
Cabril	81.3	61.3	62.0	2.1	12-218	7.4
-Peñarroya (32)						

POPULATION DOSE IN THE VICINITY OF OLD SPANISH URANIUM MINES The Science of th Total Environment, vol 329, 1-3, 283-288, 2004

ZONE	PERCENTAGE > 400 Bq/m ³		
ALBALA	14		
LA HABA-DON BENITO	6		
ALBURQUERQUE	8		
JUZBADO- VITIGUDINO	9		
ANDUJAR-CARDEÑA	8		
CABRIL-PEÑARROYA	5		

ALL THE AREAS ARE INCLUDED IN THE ICRP 65 CRITERIA FOR RADON PRONE AREA


SPAIN: WHAT WE KNOW

RADON MEASUREMENTS: REGIONAL SURVEYS

.- SIERRA DE GUADARRAMA

SIERRA DE GUADARRAMA

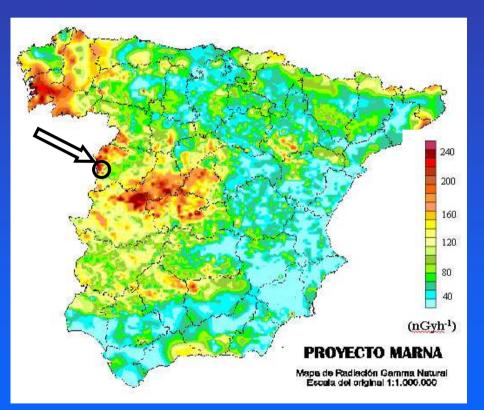
SIERRA DE GUADARRAMA

First survey (1988-1990)

□ 7 % OF HOUSES > 400 Bq/m³
 □ 28 % OF HOUSES > 200 Bq/m³
 □ GEOMETRIC MEAN: 122 Bq/m³ G.S.D. :2.1
 □ HIGHEST VALUE: 1,706 Bq/m³

Actual survey (2002-)

0.5 million population


□ 14 % OF HOUSES > 400 Bq/m³.
 □ 30 % OF HOUSES > 200 Bq/m³
 □ GEOMETRIC MEAN: 180 Bq/m³ G.S.D. :1.9
 □ HIGHEST VALUE: 2,600 Bq/m³

1.5 million population

"Lung cancer risk estimations:A comparition between radon prone areas Stei (Romania) and Sierra de Guadarrama (Spain)" Proceedings of the IRPA Regional Congress for Central and Eastern Europe, Romania, 2007

VILLAR DE LA YEGUA

"The Spanish experience on HBRA"

International Congress Series, Vol 1276, 50-53, 2005

THE VILLAR DE LA YEGUA TOWN

RADON SURVEYS:

(1988-1990); (1992-1995);(2000-2002) (2004-) N° OF MEASUREMENTS: 500

200 POPULATION

MAIN RESULTS:

GEOMETRIC MEAN: 818 Bq/m³ G.S.D.: 1.7

HIGHEST VALUE: 25,160 Bq/m³

75% OF HOUSES > 400 Bq/m³

25% OF HOUSES > 1,000 Bq/m³

DAVERAGE EXTERNAL GAMMA DOSE RATE: 300 nGy/h

RADON IN WATER: 1,500 Bq/l

DOSES AS HIGH AS 40 mSv per year

High background radiation areas: The case of Villar de la Yegua village (Spain); Radiation Protection Dosimetry 125,pp. 565 – 567, 2007.

EFFECTIVENESS OF REMEDIATION TECHNIQUES

Location of the experimental pilot house

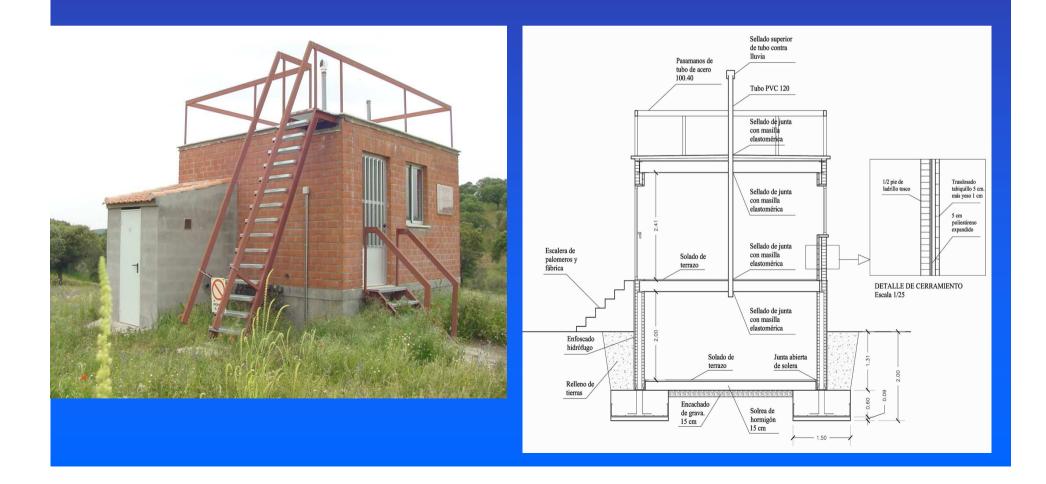
POTENTIAL RADON MAPPING

Source:

Spanish Nuclear Safety Council

PREVIOUS SOIL STUDY

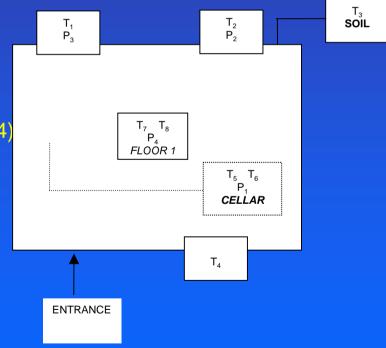
Determination of radioactive isotopes in soil High radium concentration


Determination of radon in soil at 1 m depth > AM = 250000 Bq m⁻³ (70000-500000)

Granulometry and permeability determination > AM = 10⁻¹² m² (medium)

HIGH RADON RISK AREA

Design of the experimental pilot house


Initial measurements

MATERIAL AND METHODS

•COUNTER LUDLUM
•8 TEMPERATURE SENSORS (T1 ... T8)
• 4 PRESSURE DIFFERENCE SENSORS (P1... P4)

CONTINUOUS RADON MONITORING:

•2 DoseMan SARAD •2 Radon Scout SARAD

LABORATORY INSTALLED AT THE MODEL HOUSE

METEOROLOGICAL PARAMETERS PROVIDED BY A NEARBY STATION

Data were recorded every 10 minutes

- Mean wind velocity (m/s)
- Maximum wind velocity (m/s)
- Mean wind direction (°)
- Mean air temperature (°C)
- Maximum air temperature (°C)
- Mean relative humidity (%)
- Mean pressure (mb)
- Mean solar radiation (W/m2)
- Maximum solar radiation (W/m2)
- Accumulated fall (mm)
- Evaporation (mm)
- Battery state (V)

Mean wind speed varied from January 2006 until June 2007 between 0 y 11,6 m/s whereas air temperature between –5,3°C y +36,1 °C.

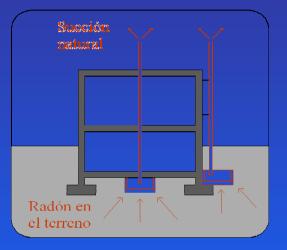
Initial measurements (4 months)

CLOSED MODULE

Mean indoor radon concentrations:

42.000 Bq/m³ in <u>CELLAR (MAX VALUE 120.000 Bq/m³)</u> 7.000 Bq/m³ in <u>FIRST FLOOR</u> (MAX VALUE 40.000 Bq/m³)

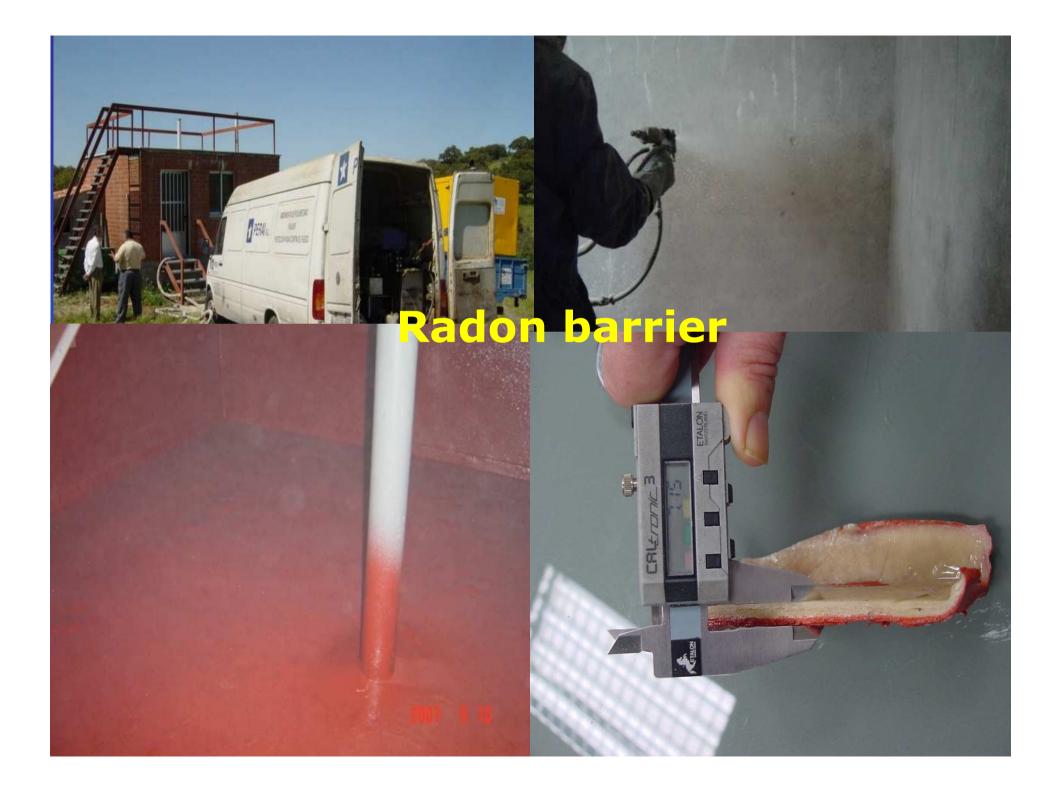
- Increased indoor radon concentrations after heavy rain
- No significant influence of wind and temperature
- Inverse correlation with athmospheric pressure variations. Main factor


Remedial actions tested

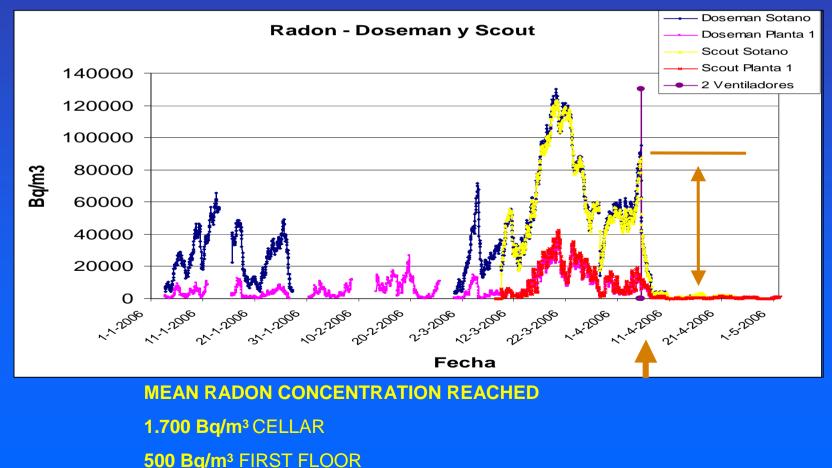
Natural/Forced air extraction from soil with lateral and central pipe

Pressurization/depressurization of air within the soil with central pipe

Crossed ventilation in cellar

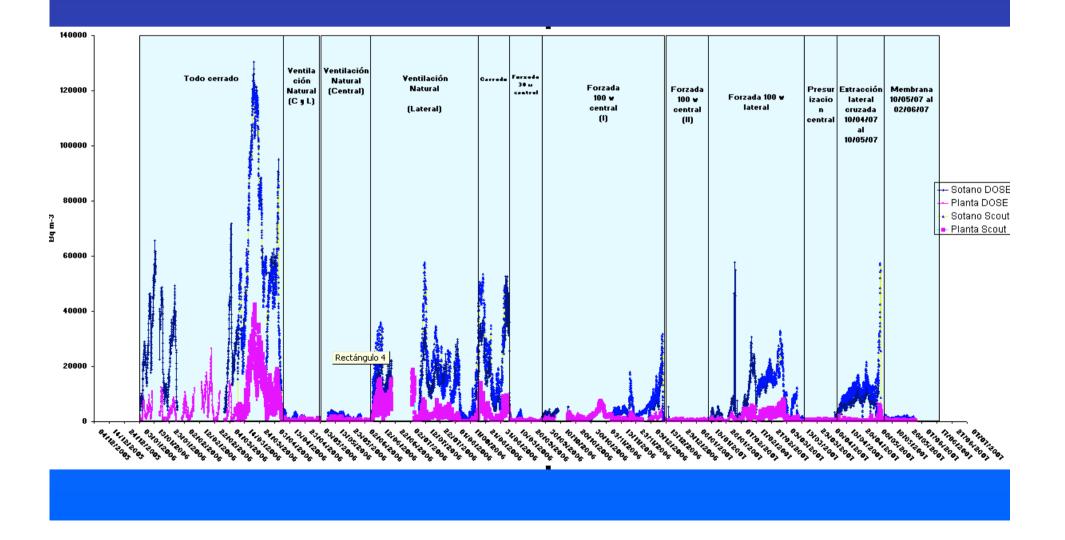

Insulation barrier

CENTRAL PIPE UNDER SOIL


The second

EFFECTIVENESS

Considerable radon reduction with all actions

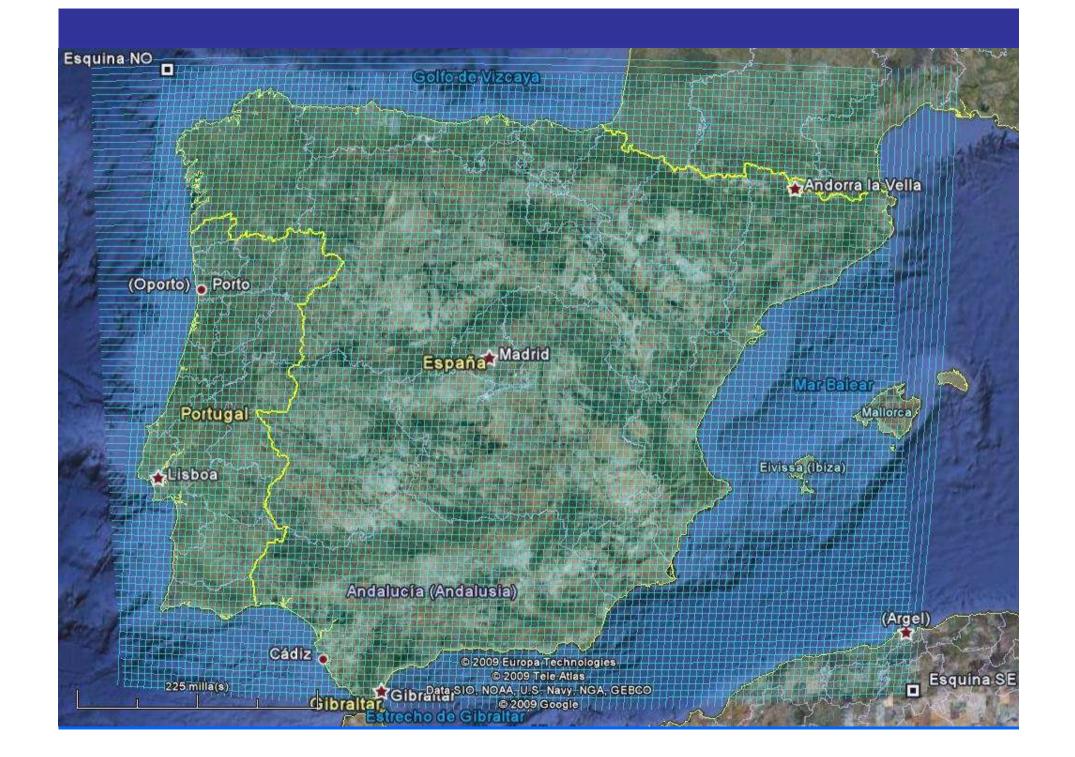


EFFECTIVENESS (mean lowest level reached in Bq m⁻³)

Action	Fi	irst floor		Cellar
Central natural ventilation	600		1700	
Lateral natural ventilation	2300		16000	
Central forced extraction	250		400	
Lateral forced extraction	700		1300	
Central pressurization	400		300	
Crossed ventilation	500		7200	
Radon barrier	300		1700	
		Mean lowest	level rea	ched in Bq m ⁻³

WHOLE STUDIED PERIOD. 2006 AND FIRST SIX MONTHS OF 2007

CONCLUSIONS


.- THE RISK COMING FROM NATURAL RADIATION IS VERY DIFFICAULT TO ACCEPT FOR THE AUTHORITIES WHICH FINALLY ARE SUPPORTING THE RESEARCH ACTIVITIES.

.- THE INCLUSION OF RADON AS ANOTHER INDOOR AIR POLLUTANT, IS VERY IMPORTANT BECAUSE THIS MEANS TO BE IN LAW AS A NATURAL WAY.

WHAT ABOUT THE NEXT FUTURE

There is a lack of requirements concerning radon protection in the Spanish legislation for radon in houses BECAUSE in this case only exist a Recomendation 90/143/EURATOM with a design level value of 200 Bq/m³

We kindly invite you to take part in

INTERNATIONAL INTERCOMPARISON EXERCISE ON NATURAL RADIATION MEASUREMENTS UNDER FIELD CONDITIONS

Organized by the Radon Group (University of Cantabria, SPAIN)

SUMMER 2011

Saelices el Chico (Salamanca, Spain)

GRUPO RADON Facultad de Medicina Avda. Cardenal Herrera Oria s/n 39011 Santander Cantabria (SPAIN) Phone: +34 942 20 22 07 e-mail: laruc@unican.es

SINCERE THANKS FOR YOUR ATTENTION!