The influence of observation protocols on reported values of Rn in soil air

Peter Bossew German Federal Office for Radiation Protection, Köpenicker Allee 120-130, 10318 Berlin

11th INTERNATIONAL WORKSHOP on the GEOLOGICAL ASPECTS OF RADON RISK MAPPING

September 18th – 20th(22nd), 2012, Prague, Czech Republic

Content

- 1. Motivation
- 2. Soil Rn sampling
- 3. Numerical experiment
- 4. conclusions

Motivation, 1

- Often a quantity of interest cannot be observed directly. Observation = sampling design, sampling, measuring, evaluation.
- It must be estimated from quantities which can be observed.
- Examples from the Rn world:

1) "long-term indoor Rn concentration":

observed: concentration over a period, conditions ± controlled

2) "Rn risk", defined as prob(indoor C>c₀):

probability cannot be observed, but only estimated from data.

3) "Rn concentration in soil air":

quantity is under-defined in real situations.

Motivation, 2

- What do we do in practice?
- <u>Apply assumptions:</u> e.g. indoor-measurement over 1 year equals long-term concentration
- <u>Apply models:</u>
 - e.g. from indoor-measurement over 1 month, apply seasonal factor \rightarrow estimate of long-term.
 - e.g. for risk: assume log-normal distribution of concentrations, estimate parameters from data and calculate prob from LN-model.
- <u>Define protocol</u>, which yields an *operational quantity*, which substitutes the ideal one.
 - e.g.: soil Rn: concentration in 1 m depth, sampled with a certain device, evaluated with certain rule.

Motivation, 3

- <u>This presentation:</u> observation of Rn concentration in soil air
- Appears particularly delicate:

- most soils are not homogeneous horizontally and vertically

 \Rightarrow what does "concentration in soil" mean?

- temporal variability due to meteorological and hydrological influence

 \Rightarrow how to produce representative values?

 - sampling procedure influences the quantity which is being sampled
 ⇒ can one control this effect?

Sampling soil air

- Basically 2 classes of methods:
- <u>Active:</u>

borehole(s), probe, insulate against surface air, extract air (grab or continuous), measure, evaluate.

• Passive:

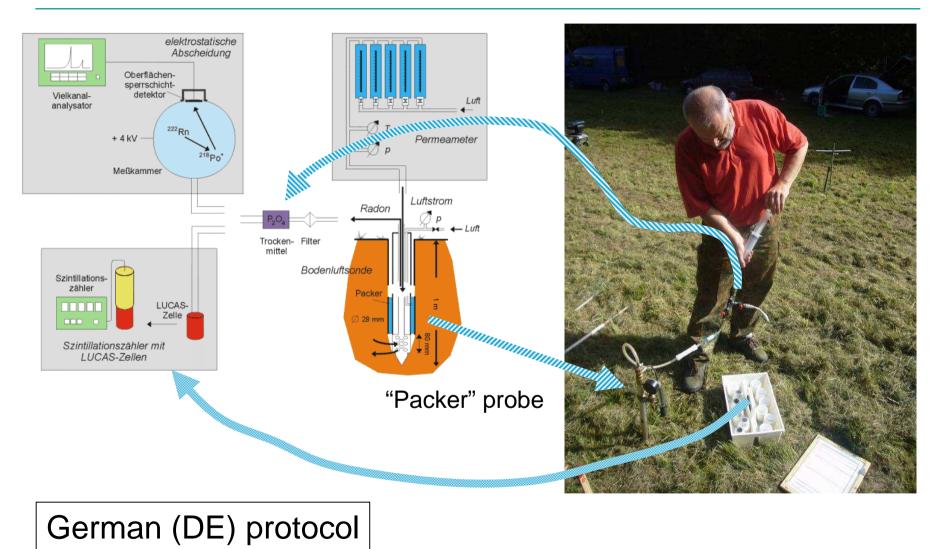
borehole, bury passive detector (e.g. TE), close hole, expose for some period, recover, count tracks, evaluate.

• <u>Here:</u> discussion of two active methods

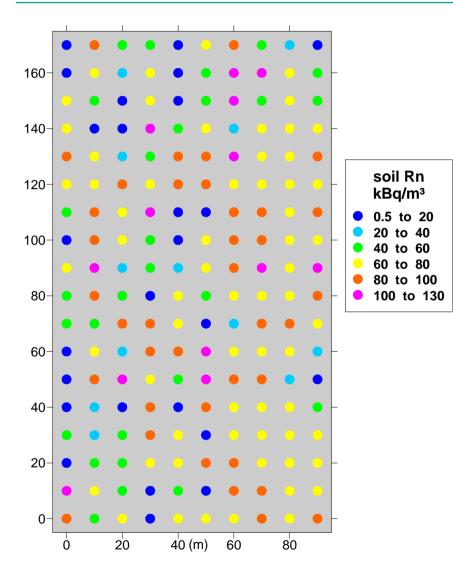
2 active methods

- for short: "DE" (Kemski et al.) and "CZ" (Neznal et al.) protocols
- why these? very popular
- not discussed here:
 - temporal aspect: it has been shown that under most conditions (certain ones excluded) yield reproducible values for a location, i.e. "noise" introduced by temporal variability does not obscure the "signal";
 - influence of method on quantity: ± understood qualitatively.
- In any case:

The observation protocol actually defines the quantity in detail, which it intends to observe.

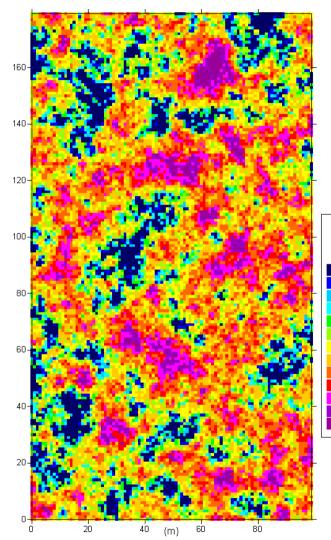

consequence

- just to repeat because it is so important: The observation protocol actually defines the quantity which it intends to observe.
- ⇒ Different protocols yield, in general, systematically (i.e. apart from observation uncertainty) different values of the nominal quantity "soil Rn", under the same objective conditions.
- ⇒ Need to investigate these differences in order to be able to compare reported values of "soil Rn".


"DE" vs. "CZ" protocols

	"DE"	"CZ"
horizonal design	3 boreholes, equilateral triangle, ~5 m side.	\geq 15 holes, distributed over the investigation area (e.g. building site)
vertical design	standard 1 m deep, if <1 m: correction factor	standard 0.7-0.8 m deep
borehole	"Packer" probe, inserted into drilled hole	"lost tip" probe makes the hole
air sampling	2 samples per hole	1 sample
measurement	Lucas cell; m = 2 - 3 measurements per sample; AM of 2·m measurements per hole	Lucas cell
evaluation	"soil Rn" = maximum of the AM's of the 3 holes.	"soil Rn" = 75%-quantile of the holes. Values <1 kBq/m ³ excluded.

how it looks in practice



simulation study: 1) data

- data: real values, provided by M. & M. Neznal;
- Observation: "CZ" protocol;
- These data taken as "true" values of the quantity "Rn conc. in soil"
- Construct "true" Rn field;
- Simulate "DE" and "CZ" protocol on this "true" field;
- Compare results.

2) simulated "true" field

sequential simulation based on variogram;

• 1 realization chosen

(not the mean, in order to preserve the strong variability);

• cells 1m x 1m.

simulated

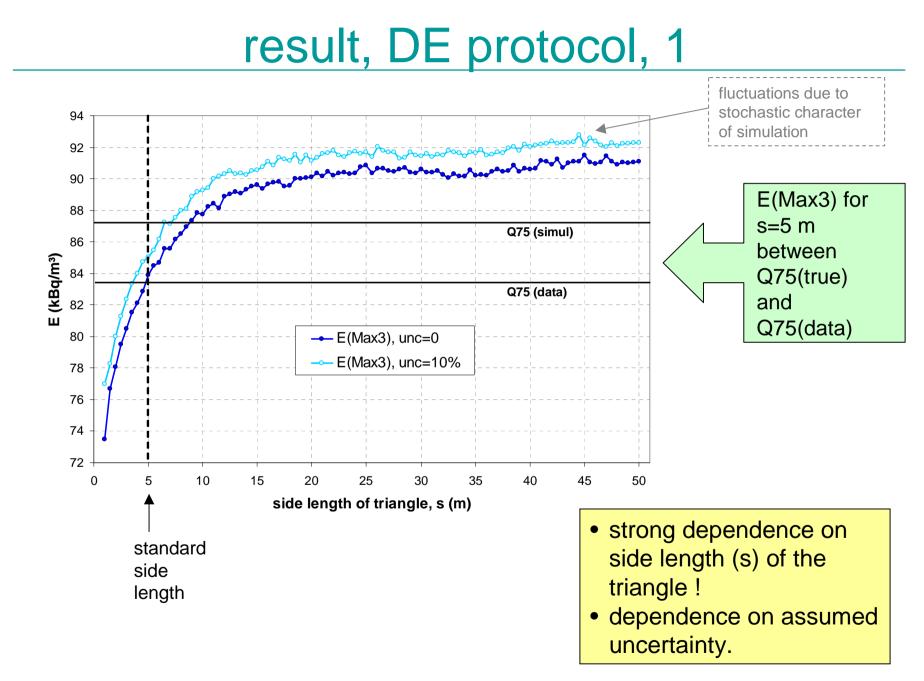
soil Rn, kBq/m³ 0.5 to 10 10 to 20

basic statistics:

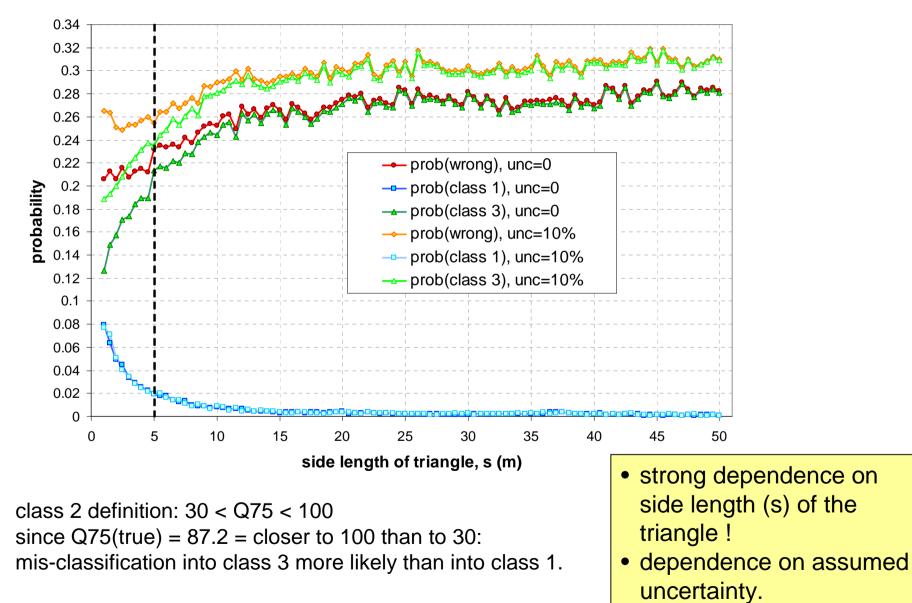
statistic	original data	simulation	
n	180	18000	
AM (kBq/m³)	62.26	66.64	
SD (kBq/m³)	29.80	30.02	
CV	48%	45%	
Min (kBq/m³)	0.5	0.5	
Max (kBq/m³)	122.1	122.1	
Med (kBq/m³)	69.1	73.4	
Q75 (kBq/m³)	83.2	86.5	
Q75 (Z>1 only) (kBq/m ³)	83.4	87.2	
GM (kBq/m³)	44.4	48.1	
GSD	3.26	3.40	

Czech classification: **Rn class 2** (Q75 between 30 and 100 kBq/m³ for low permeable soil).

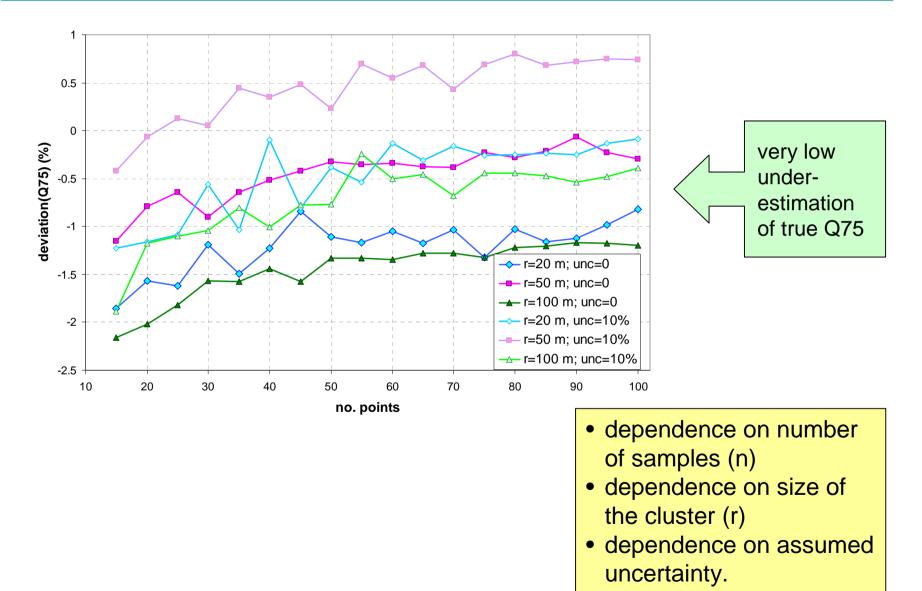
small-scale structure strongly depends on variogram model!


3) numerical Rn sampling

• <u>"DE" protocol:</u>

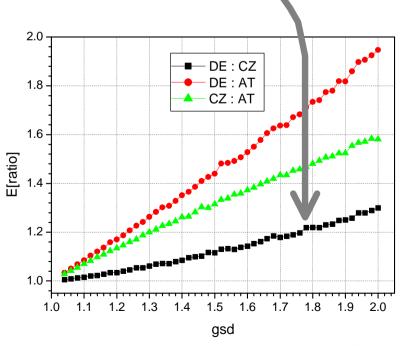

- 10000 equilateral triangles, side=s, located randomly over the field;
- Gaussian noise 0%; 10% assumed;
- E(max3) = expectation acc. DE protocol;
- prob(wrong) = probability of wrong classification (true class = 2);
- prob(class 1, 3) = probability that the protocol wrongly classifies as class 1 or class 3.

• <u>"CZ" protocol:</u>


- $n \ge 15$ random samples taken, 2000 realizations;
- within cluster of radius r.
- Gaussian noise 0%; 10% assumed;
- E(Q75) = expectation acc. CZ protocol;
- prob(wrong) etc. as above;
- dev := 100·(E(Q75)-Q75true)/Q75true, deviation from the "true" Q75 = the one of the simulated field = 87.2.
- Effects of different sampling depth and of different extracted soil air volumes not considered!

result, DE protocol, 2

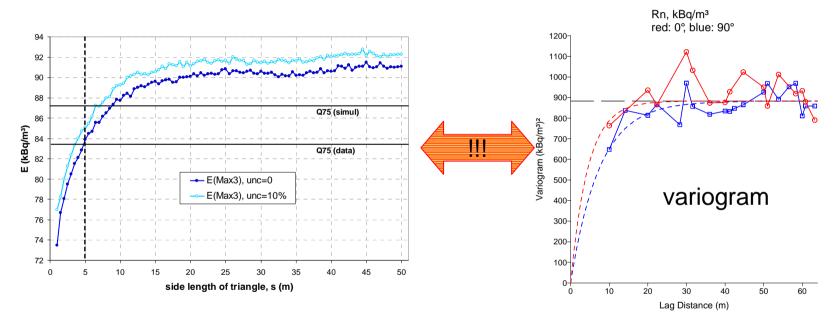
result, CZ protocol



comparison of the methods

protocol	value (kBq/m ³)			
true values: AM	66.6 ± 30.0			
true values: Q75(Z>1)	87.2			
measurement unc .:	unc=0		unc=10%	
DE (s= 5m), E(Max3)	83.9 ± 20.4, p(wrong)=23%		85.0 ± 22.0, p(wrong)=25%	
CZ; 15 points, r=20m, E(Q75)	85.6 ± 8.6, p(wrong)=4.5%		86.1 ± 9.4, p(wrong)=5.9%	
CZ; 15 points, r=50 m	86.2 ± 6.5, p(wrong)=2.6%		86.8 ± 7.3, p(wrong)=4.0%	
CZ, 15 points. r=100 m	85.3 ± 6.2, p(wrong)=1.2%		85.6 ± 7.3, p(wrong)=2.3%	
CZ, 100 points, r=100 m	86.2 ± 2.4, p(wrong)<0.05%		86.9 ± 2.9, p(wrong)<0.05%	
CZ, original sample: r=total domain, 180 points	83.4			
 all very similar to "true" Q75 ! all > AM(true) due to definition of Max3 and Q75 → conservative! 		p(wrong)(CZ) < p(wrong)(DE) but DE-protocol does not pretend to estimate Q75 and class acc. CZ scheme.		

conclusion & caveat & to-do, 1


- Max3 (DE-protocol) and Q75 (CZ-protocol): remarkably similar results!
- depth correction: DE value x 0.93 (low permeable loamy soil, acc. Kemski 2002)
- previous simpler numerical study (EGRM-report v.1, sec. 4.5.2.4): samples taken from marginally LN population, spatial structure not considered: difference DE - CZ protocols depends strongly on GSD of true field.

empirical study, Barnet et al. 2010: $DE/CZ \approx 1.14$

conclusion & caveat & to-do, 2

very suspicious: result appears to depend on spatial structure !! Maybe result typical for the assumed true Rn field ??

\Rightarrow to do:

investigate dependence on spatial structure of the true field by assuming different variogram models \rightarrow many simulations \rightarrow quite heavy numerical work – was not possible within this study!

Thank you !