



# Latest news about radon Mapping in Spain

# Luis Santiago Quindós Poncela Professor University of Cantabria

**Radon Group, University of Cantabria** 

11<sup>th</sup> INTERNATIONAL WORKSHOP ON THE GEOLOGICAL ASPECTS OF RADON RISK MAPPING September 18th-20th, June 2012 Prague, Czech Republic





# **UNIVERSITY OF CANTABRIA**

# **Radon Group**

# **35 YEARS DEALING WITH NATURAL RADIATION**

.- 15000 RADON MEASUREMENTS

.-9000 SOIL SAMPLES ANALYSIS

.- 7000 EXTERNAL GAMMA RADIATION MEASUREMENTS



UNIVERSIDAD





Laboratorio de Radiactividad Ambiental

# **QUALITY INSURANCE** (ENAC, HPA, etc...)

Gammadata

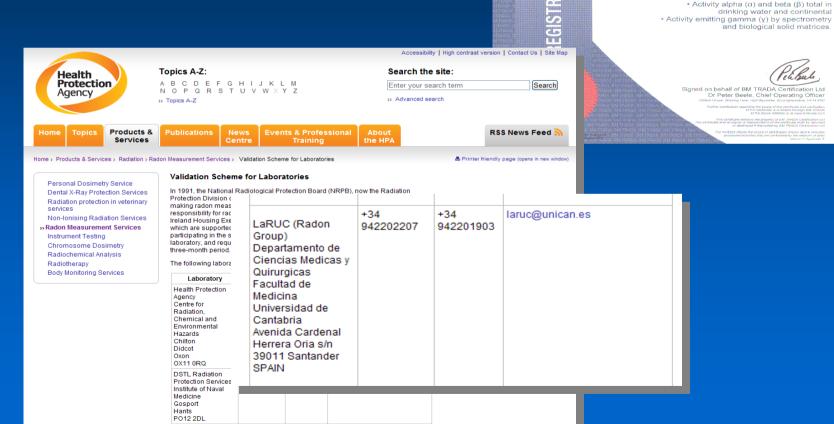
Certificate Number 8363 Date of Initial registra 24 May 2011 Date of last issue 24 May 2011 1 Laboratorio de Radioactividad Ambiental - LARUC Ê STRATIO

**BM TRADA** 

CERTIFICATION

**BM TRADA certify that the** Quality Management System of

complies with the requirements of ISO 9001:2008


· Measurement of radon exhalation from soil, building materials and sediments Concentration of radon in air

Cardenal Herrera Oria s/n 39011 Santander Cantabria

Scope of Certification

Telehal


Spain



+44 (0)1905 +44 (0)1905 chris.bradburn@gammadata.se

# **HEALTH RISKS**

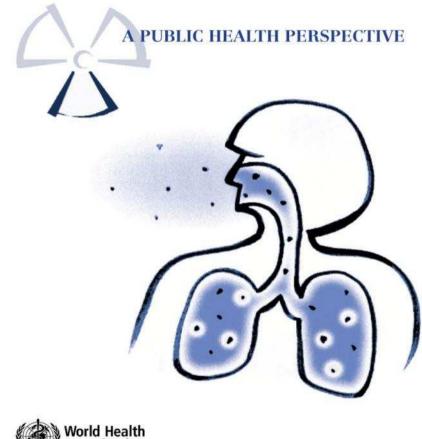




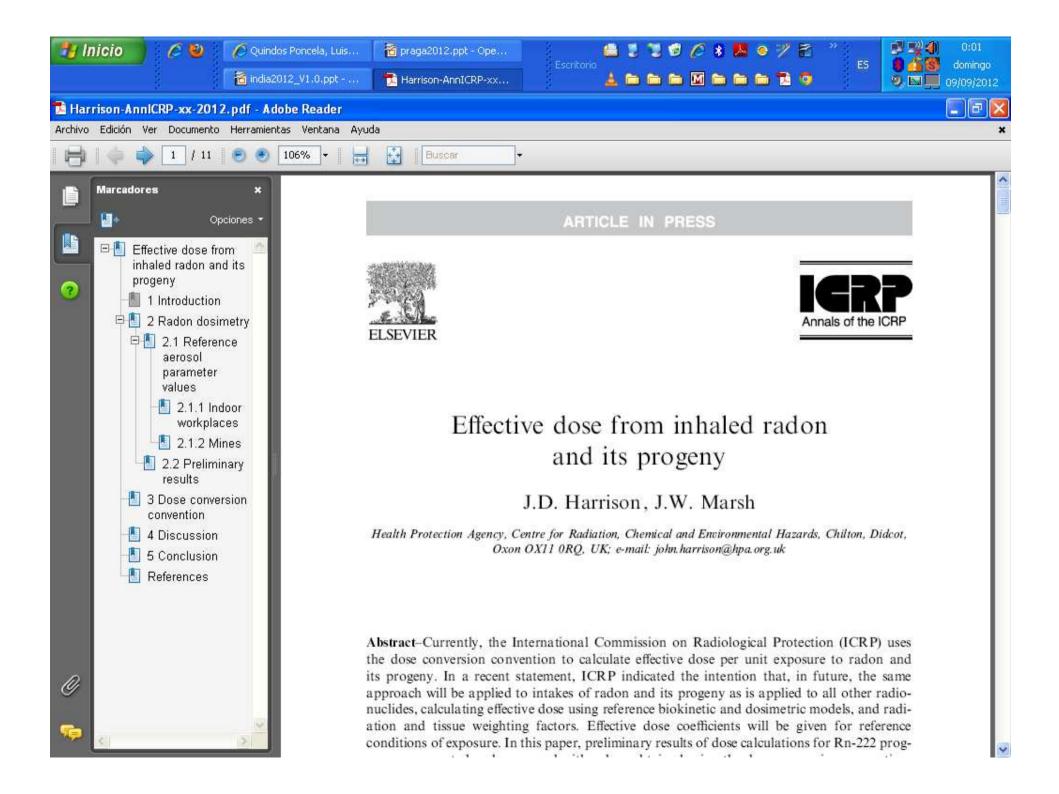
RADON AND PROGENY WILL BE TREATED IN THE SAME WAY AS OTHER RADIONUCLIDE ICRP, Publication 115 (2010)



# **International Commission on Radiological Protection**


# **Statement on Radon**

Approved by the Commission in Porto on November 2009


# **EPIDEMIOLOGICAL**

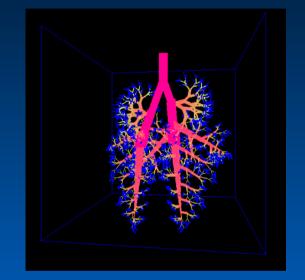


# WHO HANDBOOK ON **INDOOR RADON**








# **Risk** assessment

Dosimetric model

### Estimation of dose per unit exposure

### from respiratory tract model

Progeny retention period Weighting factor for alpha particles Sensibility of pulmonary tissue Weighting factors for esch region Probability density function



Applied to miner's conditions (Birchall 1994) 15 mSv WLM<sup>-1</sup>

Applied to dwellings (Marsh 2002) 12 mSv WLM<sup>-1</sup>



**Table 2.** Average dose conversion factor (*DCF*) for the inhalation of unattached (*DCF<sub>u</sub>*) and aerosol attached (*DCF<sub>ae</sub>*) radon decay products in air of human living places arranged accordingly to aerosol conditions, relative cancer sensitivity distribution of the bronchial ( $w_{BB}$ ), bronchiolar ( $w_{bb}$ ) and alveolar ( $w_{AI}$ ) regions of the thoracic lung, v = inhalation rate, Z = particle concentration of the aerosol.

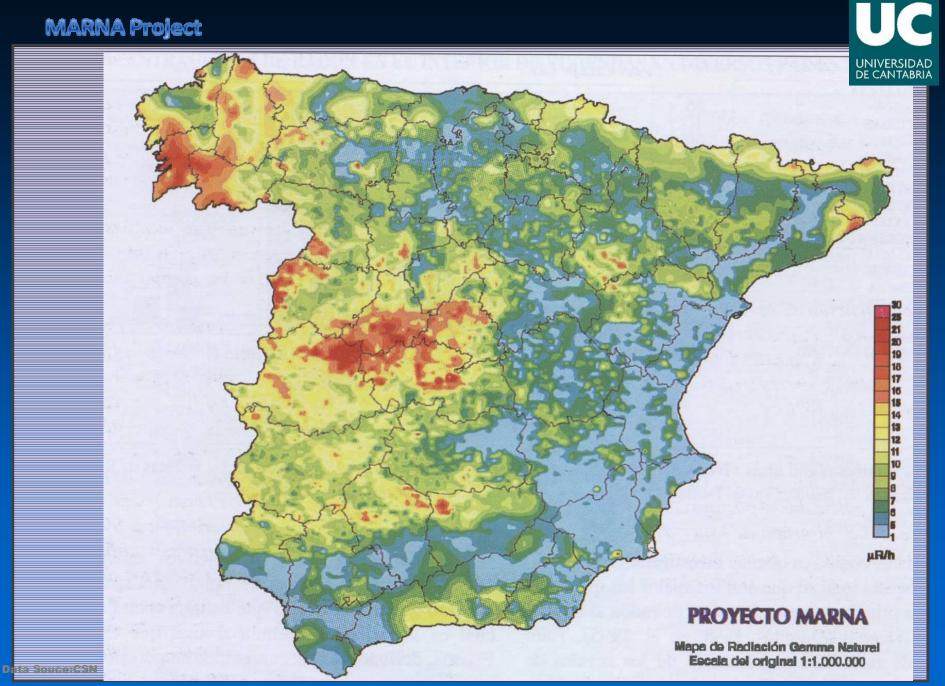
|                  | Particle concentration     | Nose<br>breathing      | DCF (mSv WLM <sup>-1</sup>        | <sup>1</sup> ) $(DCF_{\mu} + DCF_{ae})$               |
|------------------|----------------------------|------------------------|-----------------------------------|-------------------------------------------------------|
| Place            | $Z (10^3 \text{ cm}^{-3})$ | $\nu (m^3 h^{-1})$     | $w_{BB} = w_{bb} = w_{AI} = 0.33$ | $w_{BB}$ : $w_{bb}$ : $w_{AI} = 0.8:0.15:0.05$        |
| Outdoor air      | 20-40                      | 1.2                    | 13.2                              | 9.7                                                   |
|                  |                            | V Chronelland          | (0.6 + 12.6)                      | (1.5 + 8.2)                                           |
| Dwellings        | 5-40                       | 0.75                   | 8.3                               | 7.3                                                   |
|                  |                            |                        | (1.0 + 7.3)                       | (2.4 + 4.9)                                           |
|                  | 40-500                     | 0.75                   | Sinch 1, 100 miles                | 4.2                                                   |
|                  |                            | 16 fielder             | (0.1 + 6.0)                       | (0.2 + 4.0)                                           |
| Working places   | 1–10                       | 1.2                    | 12.0                              | 13.0                                                  |
| 1                | n in soits and r           |                        | (3.0 + 9.0)                       | (7.0 + 6.0)                                           |
|                  | 10-50                      | 1.2                    |                                   | Variant pote of 7.6 alpha cherry                      |
|                  | Second And                 |                        |                                   | (1.5 + 5.2)                                           |
|                  | 50-500                     | 1.2                    | sibrel 8.2 parivorse hard         | stor balanted for a first the start                   |
|                  |                            |                        | (0.2 + 8.0)                       | $(0.5 \pm 5.2)$                                       |
|                  | 50-500                     | 31.20 <b>1.7</b> 0 110 | 10.2                              | 72 72 72 Ford 2123                                    |
| an tanàn 1966 am | aliy op the rite           | o jan khas             |                                   | (0.7 + 6.5)                                           |
|                  | ys/althouthy isi           | ui offi do onu         | e anndard deviation of 10al       | × 10 <sup>-2</sup> J m <sup>-1</sup> with a geometric |

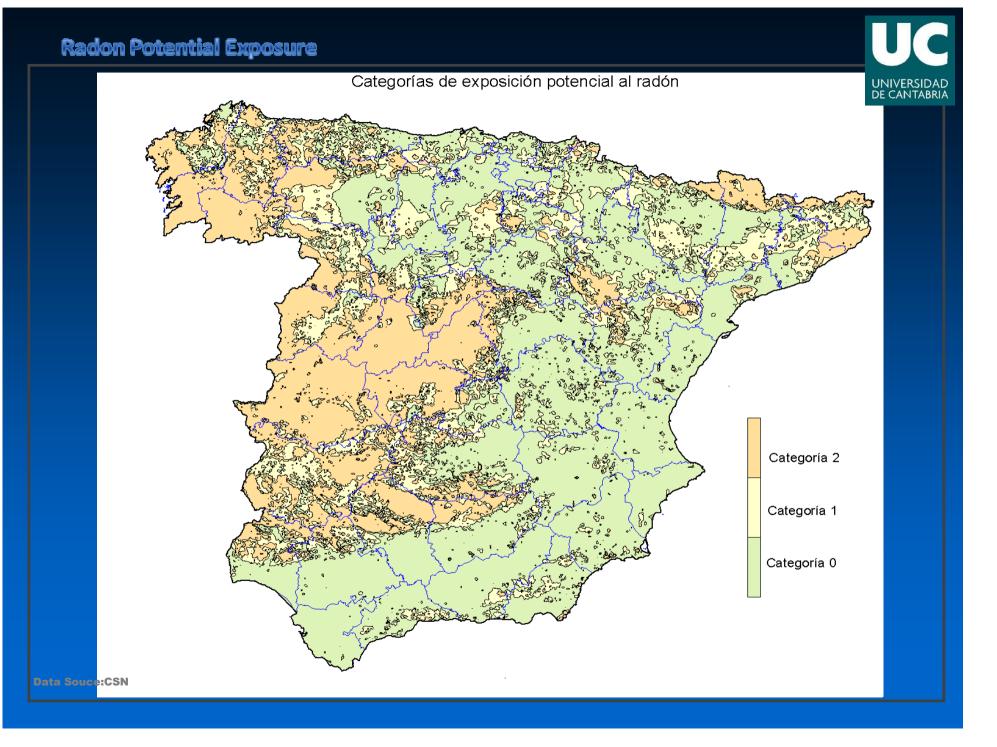
Ref: Reinniking-Porstendorfer, 1997.

# DOSE FROM RADON



# 600 Bq/m3 ----- 10 mSv/year **T=7000 h F= 0.4 ICRP65** 300 Bq/m3, ICRP 115 **18 mSv/year**





# European Council Directive 96/29 EURATOM

Reduction of dose limit: 50mSv/a --> 20 mSv/a Members of the public --> 1 mSv/a

Monitoring of exposures from natural sources:

Royal Decree 178 , 26 of JULY, 2001 Royal Decree 279, 18 of NOVEMBER, 2010 Royal Decree 22, 26 of JANUARY, 2012



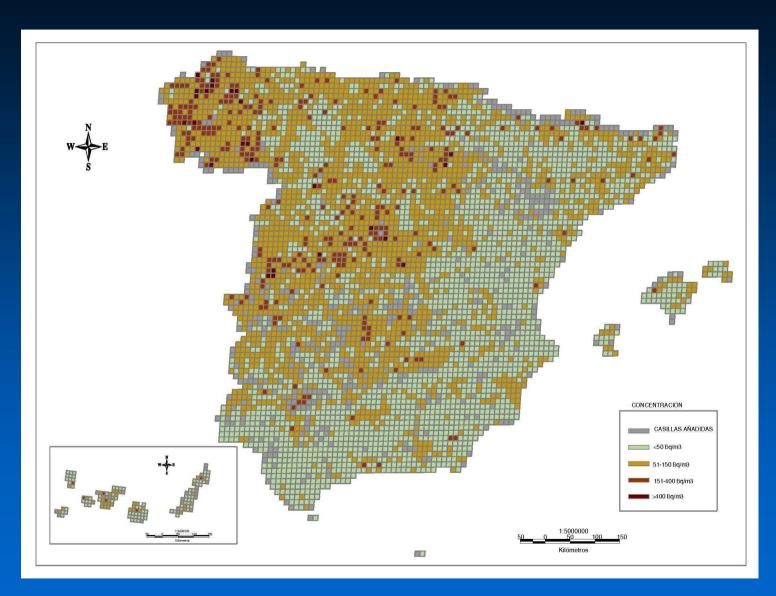




# RADON 10X10

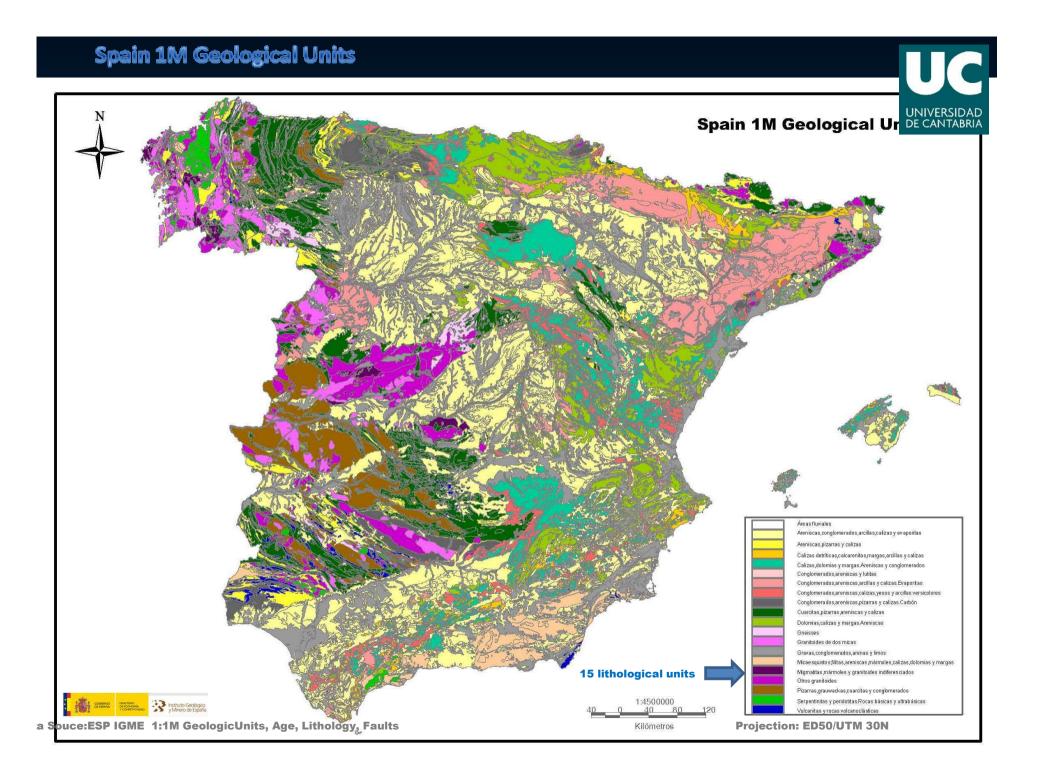
- 2010 CheckSpitt Image Image 2 2010 Tens Method Imagerbock/ Data SID, NOAA, U.S. Nary, NGA GEBCO 39'50'31.13' N 3'59'42.07' O elev. 0 m

### University Autonoma of Barcelona


University of Santiago de Compostela

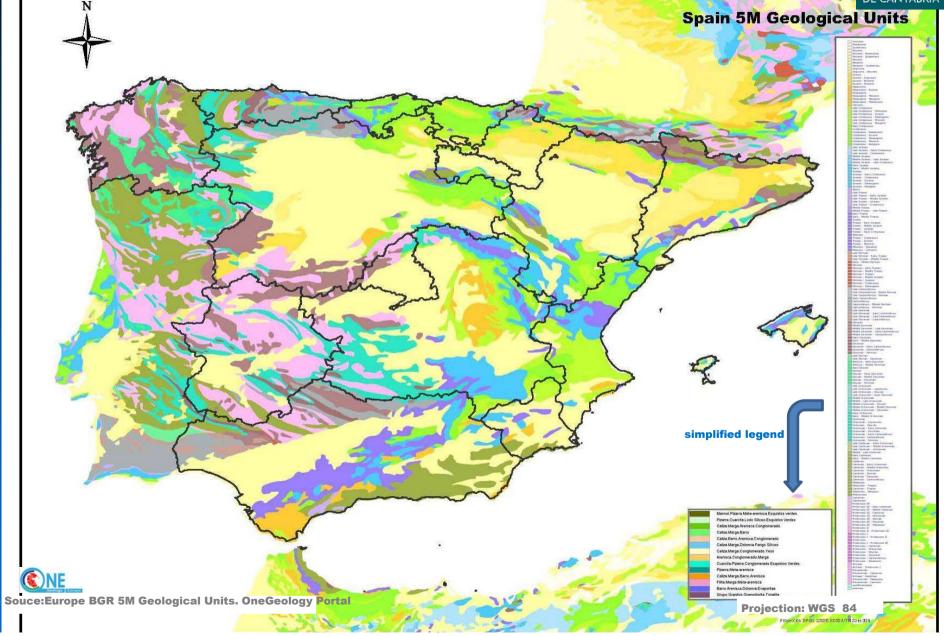
**University of Cantabria** 

D 2010 CnexiSpot Image Intege S 2010 Terra/Metrix or Image/MECAO Data SIO, NOAA, U S, Navy, NGA, GEBCO 38/5031 13"N, 3/56/42 OT, elex, 0 m


Alt plo 9368 96 km

.....Google




# 15.000 indoor radon data

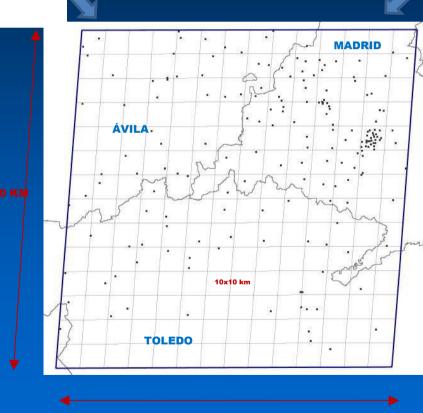




### **Spain 5M Geological Units**

# UNIVERSIDAD DE CANTABRIA




### study area 140x140 km.2

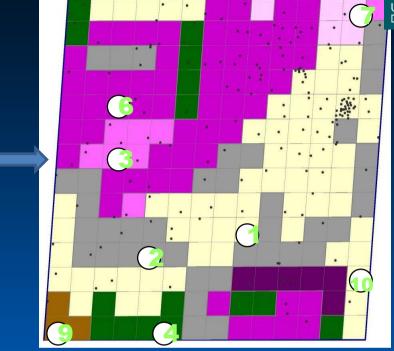


#### Database

| CASILLA | )[ ID | [ LOCALIDAD          | )( X         | ) Y        | COD    | MedidaCOD |
|---------|-------|----------------------|--------------|------------|--------|-----------|
| AV13    | 72.0  | Herreros de Suso     | 327987.99396 | 4518874.99 | T99112 | 128.0     |
| AV13    | 74.0  | S.Garcia de Ingelmos | 321482.99275 | 4515268.99 | T65290 | 19.0      |
| AV16    | 101.0 | Mingorria            | 359324.9978  | 4512526.99 | T65410 | 68.0      |
| AV17    | 102.0 | Vega de SªMª         | 361491.99795 | 4521849.99 | W32016 | 83.0      |
| AV17    | 105.0 | SºDomingo de las Pos | 362108.998   | 4519153.99 | W32448 | 182.0     |
| AV18    | 110.0 | Maello               | 372661.99866 | 4518655.99 | P79114 | 75.0      |
| AV18    | 110.0 | Maello               | 372661.99866 | 4518655.99 | W32327 | 171.0     |
| AV21    | 119.0 | Mirueña Infanzones   | 323400.99316 | 4511654.99 | T65562 | 312.0     |
| AV22    | 137.0 | Narrillos del Reboll | 333876.995   | 4503384.99 | T65426 | 81.0      |
| AV24    | 149.0 | Avila(n)             | 356787.99762 | 4502502.99 | T75957 | 124.0     |
| AV24    | 149.0 | Avila(n)             | 356787.99762 | 4502502.99 | T99087 | 26.0      |
| AV25    | 468.0 | Avila(e)             | 360543.41125 | 4502893.91 | P79376 | 318.0     |
| AV26    | 160.0 | SaMadel Cubillo      | 375811.99882 | 4511312.99 | T64886 | 14.0      |
| AV26    | 162.0 | Urraca Miguel        | 371277.9986  | 4503538.99 | T21577 | 181.0     |
| AV32    | 193.0 | La Colilla           | 350679.99708 | 4501072.99 | P68506 | 200.0     |
| AV32    | 196.0 | Avila(s)             | 356680.99762 | 4501580.99 | T21669 | 199.0     |
| AV32    | 200.0 | Aldea Rey Niño       | 352321.99725 | 4494271.99 | T65266 | 73.0      |
| AV32    | 196.0 | Avila(s)             | 356680.99762 | 4501580.99 | T21721 | 156.0     |
| AV32    | 196.0 | Avila(s)             | 356680.99762 | 4501580.99 | T21454 | 434.0     |
| AV32    | 196.0 | Avila(s)             | 356680.99762 | 4501580.99 | V83650 | 48.0      |
| AV34    | 203.0 | La Cañada            | 373348.99872 | 4495304.99 | T20343 | 920.0     |
| AV35    | 204.0 | Navalperal de Pinare | 380652.99905 | 4494499.99 | T99134 | 24.0      |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99048 | 123.0     |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99055 | 108.0     |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99220 | 230.0     |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T98980 | 362.0     |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99126 | 91.0      |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99120 | 45.0      |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99143 | 74.0      |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | P79362 | 198.0     |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99072 | 276.0     |
| AV35    | 206.0 | Navas del Marques    | 387269.99929 | 4495542.99 | T99241 | 24.0      |

Study area: 224 grids 10x10 km2 - 485 data



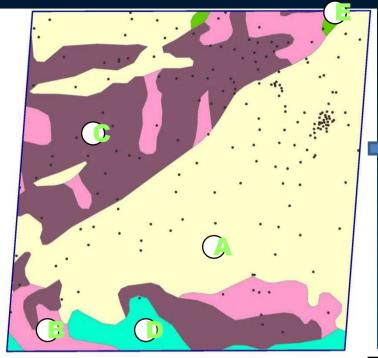

140 KM

### Spain 1M Geological Units. Study Area.



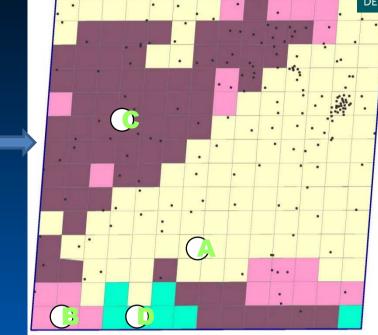
**Geological Units:** 

1.Sandstones, conglomerates, clays, limestones and evaporites
2.Gravels, conglomerates, sands and silts
3.Two-mica granites
4.Quartzites, slates, sandstones and limestones
5.Dolomite, limestone and marl. Sandstones
6.Other granitoids
7.Gneisses
8.Conglomerates, sandstones, clays and limestones. evaporites
9.Slates, grauwackas, quartzites and conglomerates
10.Migmatites, marbles and undifferentiated granitoids




|    | 1 M GEOLOGICAL UNITS                                             | Median | A.M    | s.d    | G.M    | s.d | Max. | Min. | Nº Samples |
|----|------------------------------------------------------------------|--------|--------|--------|--------|-----|------|------|------------|
|    | Sandstones, conglomerates, clays, limestones and evaporites      | 76,00  | 82,46  | 37,89  | 72,61  | 1,8 | 170  | 5    | 217        |
|    | Sandstones, shales and limestones                                |        |        |        |        |     |      |      |            |
|    | Limestones, dolomites and marls. Sandstones and conglomerates    |        |        |        |        |     |      |      |            |
|    | Conglomerates, sandstones, clays and limestones. evaporites      |        |        |        |        |     |      |      |            |
|    | Conglomerates, sandstone, limestone, gypsum and clay versicolor. |        |        |        |        |     |      |      |            |
|    | Conglomerates, sandstones, shales and limestones. Coal.          |        |        |        |        |     |      |      |            |
|    | Quartzites, slates, sandstones and limestones                    | 74,00  | 135,60 | 141,19 | 98,01  | 2,1 | 472  | 57   | 10         |
|    | Dolomites, limestones and marls. sandstones                      |        |        |        |        |     |      |      |            |
|    | Gneisses.                                                        | 367,50 | 357,50 | 317,32 | 207,65 | 3,5 | 647  | 58   | 6          |
|    | Two-mica granites                                                | 194,00 | 165,00 | 58,15  | 153,44 | 1,5 | 274  | 45   | 21         |
|    | Gravels, conglomerates, sands and silts                          | 61,00  | 77,52  | 46,09  | 67,36  | 1,7 | 185  | 14   | 50         |
| 10 | Migmatites, marbles and undifferentiated granitoids              | 44,00  | 43,00  | 2,24   | 42,95  | 1,1 | 44   | 39   | 5          |
|    | Other granitoids                                                 | 138,00 | 148,29 | 85,42  | 125,52 | 1,8 | 475  | 5    | 175        |
|    | Slates, grauwackas, quartzites and conglomerates                 | 12,00  | 12,00  | -      | 12,00  | -   | 12   | 12   | 1          |
|    | Serpentinites and peridotites. Basic and ultrabasic rocks,       |        |        |        |        |     |      |      |            |
|    | Volcanics and volcaniclastic rocks                               |        |        |        |        |     |      |      |            |




### Spain 5M Geological Units. Study Area.

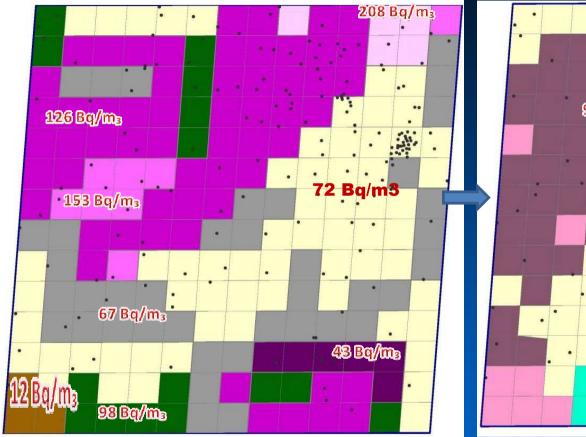




#### **Geological Units:**

A. Marl, conglomerate, limestone, gypsum B. Gneiss, mylonite C. granite group, granodiorite, tonalite D. Quartzite, shale/slate, greenschist, conglomerate E. Limestone, sandstone, marl, mud




|   | 5 M GEOLOGICAL UNITS                         | Median | A.M    | s.d    | G.M    | s.d | Max. | Min. | Nº Samples |
|---|----------------------------------------------|--------|--------|--------|--------|-----|------|------|------------|
|   | Meta-sandstone. Marble. Slate. greenschist   |        |        |        |        |     |      |      |            |
|   | Sandstone. Marl. Limestone. conglomerates    |        |        |        |        |     |      |      |            |
| 1 | Limestone. Marl mud                          |        |        |        |        |     |      |      |            |
|   | Sandstone. Mud. Limestone. conglomerates     |        |        |        |        |     |      |      |            |
|   | Limestone. Dolomite. Marble. Silicon Fango   |        |        |        |        |     |      |      |            |
|   | Marga. Conglomerate. Limestone. Gypsum       | 64,00  | 87,01  | 89,39  | 64,03  | 2,2 | 920  | 4    | 275        |
|   | Sandstone. Conglomerate. Marl                |        |        |        |        |     |      |      |            |
|   | Quartzite. Slate. Greenschist. conglomerates |        |        |        |        |     |      |      |            |
|   | Slate. Meta-sandstone                        |        |        |        |        |     |      | -    |            |
|   | Sandstone. Mud. Marl. limestone              |        |        |        |        |     |      |      |            |
|   | Phyllite. Meta-sandstone. Marl               | 83,00  | 185,63 | 227,38 | 100,90 | 3,1 | 939  | 12   | 32         |
|   | Mud. Sandstone. Dolomite. evaporites         |        |        |        |        |     |      |      |            |
|   | Granites Group. Granodotorita. tonalite      | 104,50 | 140,28 | 129,85 | 94,42  | 2,5 | 737  | 5    | 178        |

### Comparison data. Study Area.





#### 5M Geological Units. Study Area.



|     |         |            |    |            | 1       | • |    |
|-----|---------|------------|----|------------|---------|---|----|
|     |         |            |    |            |         |   |    |
|     |         |            |    |            | ·       | • |    |
|     | 94 Bq/m | <b>J</b> 3 |    |            |         |   |    |
|     |         | 1.         |    | •          |         | 1 | •  |
|     |         |            | •  |            | •       |   |    |
|     |         |            |    | •          | • • •   |   |    |
|     |         |            | 64 | ∙<br>Bq/m₃ | •       |   | •  |
| + 1 |         |            | •  |            |         |   |    |
|     |         | · ·        |    |            |         | • | R. |
| •   |         |            |    |            | •       |   |    |
|     | •       |            |    | · 101 (    |         |   |    |
|     |         |            |    | 101        | oq/1113 |   |    |
|     |         |            |    |            |         |   |    |

|   | 1 M GEOLOGICAL UNITS                                        | id | G.M    |
|---|-------------------------------------------------------------|----|--------|
|   | Sandstones, conglomerates, clays, limestones and evaporites | 1  | 72,61  |
|   | Quartzites, slates, sandstones and limestones               | 4  | 98,01  |
| 1 | Gneisses.                                                   | 7  | 207,65 |
|   | Two-mica granites                                           | 3  | 153,44 |
|   | Gravels, conglomerates, sands and silts                     | 2  | 67,36  |
|   | Migmatites, marbles and undifferentiated granitoids         | 10 | 42,95  |
| 1 | Other granitoids                                            | 6  | 125,52 |
|   | Slates, grauwackas, quartzites and conglomerates            | 9  | 12,00  |

| 5 M GEOLOGICAL UNITS                    | id | G.M    |
|-----------------------------------------|----|--------|
| Marga. Conglomerate. Limestone. Gypsum  | A  | 64,03  |
| Phyllite. Meta-sandstone. Marl          | В  | 100,90 |
| Granites Group. Granodotorita. tonalite | D  | 94,42  |





# ROUND TABLE EUROPEAN GEOGENIC MAP Thursday 9:00-14:00

# **FUTURE GOALS**



### COMPLETE THE NATIONAL INDOOR RADON MAPPING IN DWELLINGS

### PARTICIPATE IN THE EUROPEAN GEOGENIC RADON MAP WITH THE ANALYSIS OF THE SPANISH DATA AVAILABLE

### ENSURANCE THE QUALITY OF MEASUREMENTS BY PARTICIPATION/ORGANIZATION OF INTERCOMPARISON EXERCISES UNDER FIELD CONDITIONS AND CALIBRATION CHAMBERS

MEASURING OCCUPATIONAL RADON EXPOSURE AT A NATIONWIDE SCALE ACCORDING TO THE SPANISH LAW Titulo VII BOE 178 DE 26 DE JULIO DE 2001-2012

**SPANISH SOIL RADON GAS MAPPING WILL BE START IN 2013** 



# LABORATORY OF NATURAL RADIOACTIVITY (LRN)



# **LRRN** Main building







# ... one step further about quality



# International Intercomparison exercise under field conditions

**42 LABORATORIES** 

**17 COUNTRIES** 





Uranium mine Saelices el Chico Salamanca, Spain







Radon exhalation (soil, building materials)

**Rn in water** 

# some remarks



# THE LRN PROVIDE US A BETTER KNOWLEDGE OF THE RESPONSE OF DETECTOR UNDER FIELD CONDITIONS, WHERE MORE VARIABLES AFFECT THE MEASUREMENT OF NATURAL RADIATION

# THE LRN LET US COMPLEMENTARY TEST OF DEVICES AND SYSTEMS

### NEW COMPARISONS (DOSIMETERS, ETC...) ARE PLANNED FOR THE FUTURE

### IMPROVEMENTS ARE NOW ONGOING TO DEVELOP MORE EXPERIMENTS IN RADON ACTIVITIES

# THE LRN WANTS TO BE A MEETING PLACE FOR RESEARCHERS IN NATURAL RADIATION

| SCHED |     |  |
|-------|-----|--|
|       | FUR |  |

| JANUARY | FEBRUARY | MARCH     | APRIL   | МАУ       | JUNE       |
|---------|----------|-----------|---------|-----------|------------|
| ΕΧΤ. γ  | ΕΧΤ. γ   | TLD's     | TLD's   | Rn soil   | Rn general |
| JULY    | AUGUST   | SEPTEMBER | OCTOBER | NOVEMBER  | DECEMBER   |
| ΕΧΤ. γ  | ΕΧΤ. γ   | FREE      | Rn soil | Rn indoor | Rn indoor  |





# EUROPEAN ASSOCIATION OF RADON SCIENTISTS AND TECHNOLOGISTS (EARST)

# EARST

European Association of Radon Scientists and Technologists

This site is aim for informing all members of EARST and interchanging opinions and debate.

Enter



#### Forum

Access to the Forum of EARST where you will be able to discuss and give new ideas on everything related to radon.

#### EARST Forum

### We welcome you

We have set a forum in order to discuss and talk all matters about Radon. Please contact us if you have any comments on the web or any ideas for improving it.

#### Partners

Universidad de Cantabria cooperates with Earst



# www.earst.eu





To promote public awareness of radon measurement, radon mitigation and new construction radon reduction techniques.

- To ensure quality standards are developed and adopted in radon measurement, radon mitigation and in construction of new radon reduction techniques.
- To provide a community for education, sharing of ideas, resources and research.

• To provide an effective partnership between radon professionals in the field and other interested public and private organizations.

• To organize the annual Radon conference combining scientific presentations and technical exhibitions from companies working on radon gas.

+ YOUR PROPOSALS HERE!!



# www.elradon.com







Děkuji za vaši pozornost