NATURAL RADIOACTIVITY AND RADON RISK ASSESSMENT IN THE VULSINI VOLCANIC DISTRICT (CENTRAL ITALY)

Bruno Capaccioni¹, Giorgia Cinelli^{1,2}, Domiziano Mostacci³, Laura Tositti⁴

¹Department of Earth and Geological-Environmental Sciences, Bologna, Italy ²Protex Italia Spa, Forlì, Italy ³ Laboratory of Nuclear Engineering, Bologna, Italy ⁴ Department of Chemistry «G. Ciamician», Bologna, Italy University of Bologna, Alma Mater Studiorum

after Vezzoli et al, 1987, modified

after Vezzoli et al, 1987, modified)

²²⁶Ra ²¹⁴Bi ²¹⁴Pb ²²⁸Ac ⁴⁰K REP U Th Κ RI (Bq/kg) (Bq/kg) (Bq/kg) (Bq/kg) (%) (Bq/kg) 3 (ppm) (ppm) 102 115 59 V04 Lat-A 122 240 1490 0.11 10 4.8 2.1 V07 Lat-A 166 174 220 309 1559 0.23 18 76 5 2.8 16 67 5.6 2.6 **V08** Lat-A 150 149 201 272 1724 0.25 V03 Lat-C 132 131 157 208 2325 0.16 13 51 7.5 2.3 V05 Lat-D 170 180 215 322 1564 0.19 17 79 5 2.8 **V06** Lat-D 82 83 133 232 1668 0.38 11 57 5.4 2.2 V01 Lat-E 60 45 80 126 586 0.34 31 1.1 6 1.9 V02 Lat-E 56 61 86 151 808 0.32 37 1.3 7 2.6 V09 Lat-F 75 66 92 150 260 0.23 7 37 0.8 1.1 V13 Lat-F 99 105 180 227 0.09 9 44 0.7 1.3 112 V14(z) Lat-F 79 80 95 0.16 38 2.5 1.3 155 769 8 V11 Lat-Pit 113 118 133 197 2175 0.13 11 48 2.2 7 V10(h) 82 Lat-Pit 235 250 262 333 1218 0.08 21 3.9 2.9 V15 Bols 175 234 306 1855 0.23 19 75 2.9 186 6 V16(z) Bols 144 147 228 327 1694 0.36 18 80 5.5 3.0 V17 Bols 140 151 199 240 2377 0.27 16 59 7.7 2.7 V18 Bols 197 206 232 278 2289 19 68 0.13 7.4 2.9 V19 Bols 64 73 177 273 2472 0.55 14 67 8 2.8 V20 Bols 125 124 141 256 2487 0.12 11 63 8 2.6 V21 Bols 214 217 293 335 2106 0.27 82 6.8 3.4 24 V12 320 394 487 319 2443 0.19 32 120 7.9 4.6 Lat Reguar soil^a (Median) 3 8 1.3 1-5 3-16 0.5-3 Range ^a UNSCEAR 2000; (h) Hydrotermalizated; (z) Zeolitizatated

Activity concentartion (Bq/kg) of natural radioisotopes by gamma-spectrometry, values of emanation power and Radioactivity Index

Site	Building Type	Floor	Building Material	Indoor Radon Activity(Bq/m ³)		
1 2 3 4 5 6 7 8 9 11 12						
		U		001		
	Apartment G	3	Tuff	1140		
		2	Tuff	1139		
14		1	Tuff	1277		
		0	Tuff	2513		
		-1	Tuff	2662		

Site	Building Type	Floor	Building Material	Indoor Radon Activity(Bq/m³)
2 3 4 5 6 7 8 9 11 12 13				Volcanic Scoria
		2		1140
		2		1140
	Apartment G	2		1139
14		1	Tutt	1277
		0	Tuff	2513
		-1	Tuff	2662

Site	Building Type	Floor	Building Material	Indoor Radon Activity(Bq/m³)
2 3 4 5 6 7 8 9 11 12 12				Volcanic Scoria
		U		001
		3	Tu∰	1140
		7		1139
	Apertment C			1277
		Ð		2513
		1	Tuff	2662

Simulation of a "standard room" using RESRAD-BUILD code

Main Parameters:

Room width, length and height: 4, 5 and 2.8 m 20 cm thick walls with a density of 2.35 g/cm³

0.8 occupancy factor 0.25 air building exchange rate (1/h)

215	Bq/kg	²³⁸ U
322	Bq/kg	²³² Th
1564	Bq/kg	⁴⁰ K

Simulation of a "standard room" using RESRAD-BUILD code

Main Parameters:

Room width, length and height: 4, 5 and 2.8 m 20 cm thick walls with a density of 2.35 g/cm³

0.8 occupancy factor 0.25 air building exchange rate (1/h)

215	Bq/kg	²³⁸ U
322	Bq/kg	²³² Th
1564	Bq/kg	⁴⁰ K

220 Bq/m^{3 222}Rn

; theilogerstrike at our of fearit R:

after Renzulli 1988, modified

Which is the logast rite at or of for the second se

after Renzulli 1988, modified

Which is the logarst rite as or of for the adon Gas?

	Total	Volcanic Products	Alluvial
Valid N	63	36	27
Mean (kBq/m ³)	56.2	66.9	42.0
Median (kBq/m ³)	52.4	66.2	36.9
Minimum (kBq/m³)	7.0	9.3	7.0
Maximum(kBq/m ³)	176.0	176.0	90.9
1.Quartile (kBq/m ³)	29.6	42.9	24.2
3.Quartile (kBq/m ³)	75.6	86.3	63.2
Std.Dev. (kBq/m ³)	33.5	35.6	24.6
Skewness	0.93	0.81	0.49
Kurtosis	1.47	1.27	-0.73
p-value S-W test	0.0084	0.1886	0.1257
p-value t-test		0.0028	

		Total	Volcanic	Alluvial		
			Products			
	Valid N	63	36	27		
	Mean (kBq/m ³)	56.2	66.9	42.0		
	Median (kBq/m ³)	52.4	66.2	36.9		
16	Minimum (kBq/m³)	7.0	9.3	7.0		
	Maximum(kBq/m ³)	176.0	176.0	90.9		
14	1.Quartile (kBq/m ³)	29.6	42.9	24.2		
12 -	3.Quartile (kBq/m ³)	75.6	86.3	63.2		
10 -	Std.Dev. (kBq/m ³)	33.5	35.6	24.6		
ee a state of the	Skewness	0.93	0.81	0.49		
	Kurtosis	1.47	1.27	-0.73		
6	p-value S-W test	0.0084	0.1886	0.1257		
	p-value t-test		0.0028			
-20000 20000 60000 1E5 1.4E5 0 40000 80000 1.2E5 1.6E5	-20000 20000 60000 1E5 1.4E5 1.8E5 Volcanic Products					
Radon Concentration (Bq/m ³)						

Maps of percentage of high Radon Index

- Cells of 0.01 km²
- Application of geostatistical techniques to calculate mean radon concentration

%
$$highRI = \int_{CL}^{\infty} \exp\left(-\frac{(x-\bar{x})^2}{2 \times \sigma_g^2}\right) \times \frac{1}{\sigma_g \times \sqrt{2\pi}} \,\delta x$$

•threshold-CL was fixed at 70 kBq/m³ (for medium permabilty)

- 0.95 - 0.9 - 0.85 - 0.8 -0.75 - 0.7 - 0.65 - 0.6 - 0.55 - 0.5 - 0.45 -0.4 - 0.35 -0.3 - 0.25 - 0.2 - 0.15 - 0.1 - 0.05 0

Conclusions

- This study focused on a specific little town, Bolsena, but the results apply similarly to almost every old village and town located in the northern part of Latium because the same volcanic rocks have been used widely as building material and the geological framework as well is the same
- Rocks sampled from the Latera and Bolsena complexes of the Vulsini Volcanic District show high contents of natural radionuclides and all with RI > 1
- High indoor radon concentrations were encountered in Bolsena, the **Vulsini Volcanic District is undoubtedly a Radon-prone area.** The indoor radon concentration estimated using a "simulated standard room" is lower than the what was measured, the code neglects the soil contribution, that in the area investigated appears extremely important
- The radon soil map shows a correspondence between lower radon and alluvial grounds and higher radon with volcanic grounds, respectively, reflecting the different NORM contents.

Conclusions

- This study focused on a specific little town, Bolsena, but the results apply similarly to almost every old village and town located in the northern part of Latium because the same volcanic rocks have been used widely as building material and the geological framework as well is the same
- Rocks samp
 District show

ni Volcanic

Thank you for the attention!

- High indoor radon concentrations were encountered in Bolsena, the **Vulsini Volcanic District is undoubtedly a Radon-prone area.** The indoor radon concentration estimated using a "simulated standard room" is lower than the what was measured, the code neglects the soil contribution, that in the area investigated appears extremely important
- The radon soil map shows a correspondence between lower radon and alluvial grounds and higher radon with volcanic grounds, respectively, reflecting the different NORM contents.