Using ²²²Rn/²²⁰Rn activity ratio and CO₂ concentration in soil gas to trace advective fluxes.

Carlo Lucchetti, Mauro Castelluccio, Paola Tuccimei

Dipartimento di Scienze Geologiche, Università "Roma Tre", Largo San Leonardo Murialdo 1, 00146 Roma, Italia

Two gas transport mechanisms control gas flux in porous media:

and

|--|

Advection

$$J_D = -D\nabla C$$

$$J_A = -\frac{K}{\mu} \nabla P$$

 $J_D = diffusive flux$

 J_{Δ} = advective flux

C = gas concentration

K = soil permeability

D = Diffusion coefficient

 μ = gas viscosity

 ∇ = Gradient operator

P = pressure

Closer Source of the gas

Deeper Source

Fractured and permeable bedrock

Two gas transport mechanisms control gas flux in porous media:

Diffusion

and

Advection

$$J_D = -D\nabla C$$

 $J_{D} = diffusive flux$

C = gas concentration

D = Diffusion coefficient

 ∇ = Gradient operator

 $J_A = -\frac{K}{\mu} \nabla P$

 J_A = advective flux

K = soil permeability

 μ = gas viscosity

P = pressure

Closer Source of the gas

Deeper Source

Fractured and permeable bedrock

Two gas transport mechanisms control gas flux in porous media:

Diffusion

and

Advection

$$J_D = -D\nabla C$$

 $J_{\rm D}$ = diffusive flux

C = gas concentration

D = Diffusion coefficient

 ∇ = Gradient operator

*

Closer Source of the gas

 $J_A = -\frac{K}{\mu} \nabla P$

 J_{Δ} = advective flux

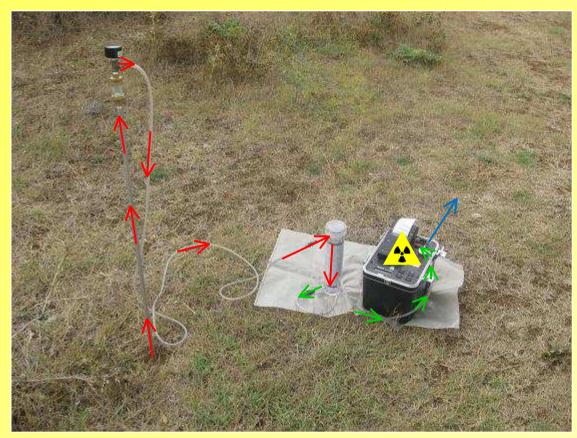
K = soil permeability

 μ = gas viscosity

P = pressure

Deeper Source

Fractured and permeable bedrock


Geological setting

SITE	GEOLOGICAL BEDROCK
Terme della Ficoncella	Travertines
Valle della Caffarella- Tor Marancia	Quaternary ignimbrites (referred to the activity of Colli Albani)
Vigna Fiorita	Lahar flows of Colli Albani

Measurement systems

Measurement system of Rn activity concentrations (at 80 cm depth):

hollow probe (Radon v.o.s. corp.) attached to a drying unit and to the continuous radon monitor (RAD 7, Durridge Co.), connected in series.

Measurement system of CO₂ concentration (at 80 cm depth): infrared detector (Dräger X-am 7000).

Measurement of ²²⁰Rn activity concentrations in soil gas (using a correction factor)

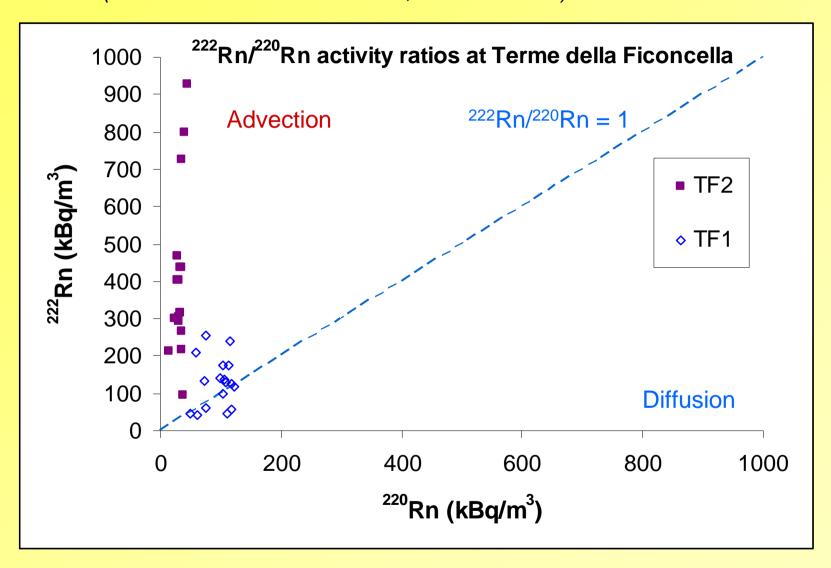
Air flow meter used to measure properly the RAD7 pump flux

²²⁰Rn half-life:

~ 1 minute

Time required to deliver the soil gas from the sampling spot to the counting chamber of RAD7 (sampling time):

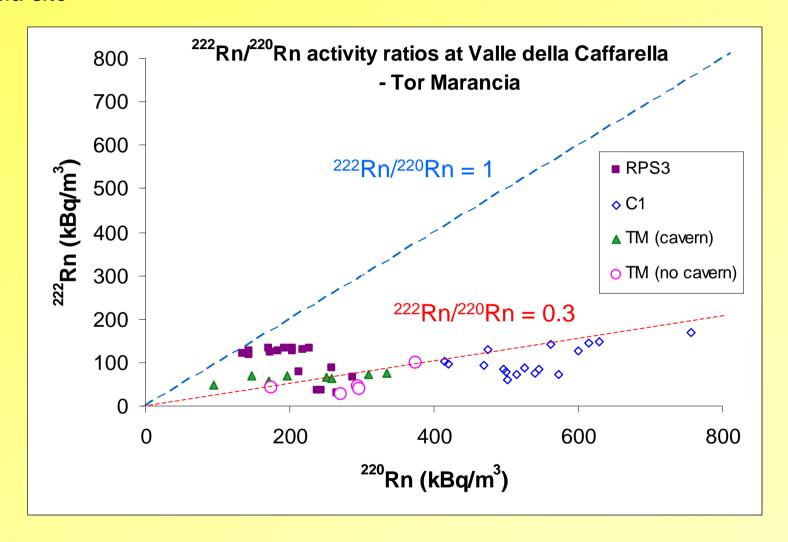
1.5 ÷ 2 minutes

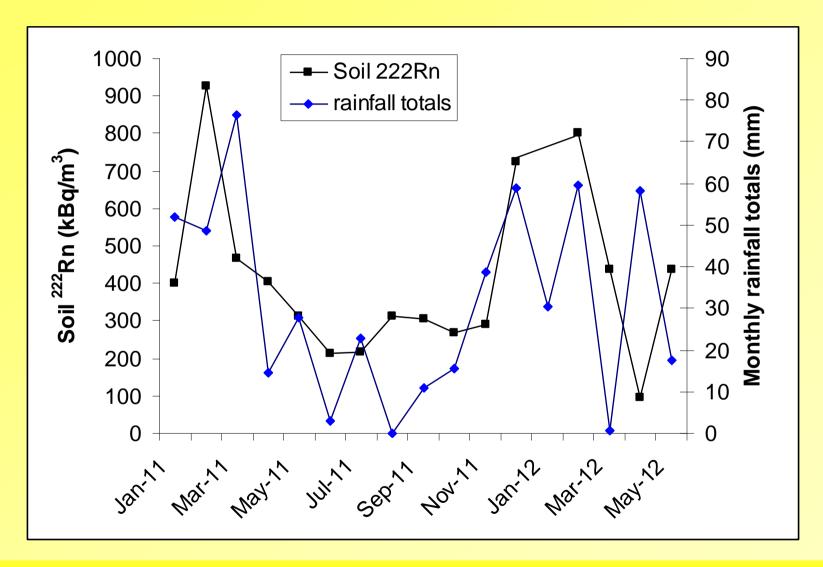

We have to correct measured value in order to obtain real value

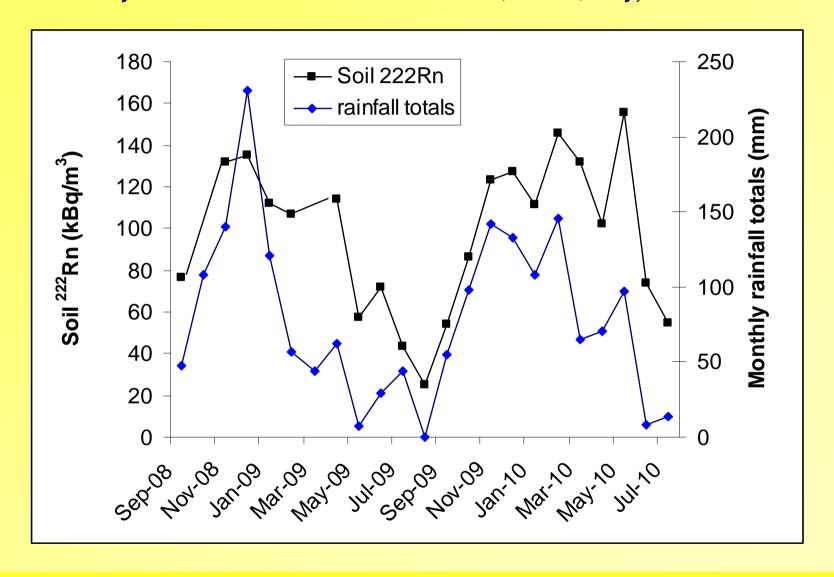
Correction factor ↔ sampling time ↔ RAD7 pump flux ↔ soil gas permeability

Methods to trace advective fluxes

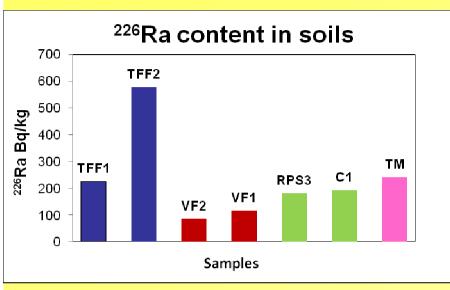
- ²²²Rn against ²²⁰Rn activity concentrations in soil gas
- Soil ²²²Rn seasonal fluctuations
- ²²⁶Ra and ²³²Th content in soils
- ²²²Rn emanation coefficients
- ²²²Rn against ²²⁰Rn exhalation rates of soil samples
- CO₂ concentration in soil gas (as possible radon carrier)

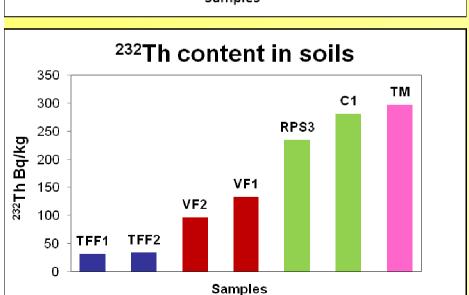

²²²Rn against ²²⁰Rn activity concentrations in soil gas measured at station TFF1 and TFF2 (Terme della Ficoncella area, Civitavecchia)


²²²Rn against ²²⁰Rn activity concentrations in soil gas measured at station VF1 and VF2 (Vigna Fiorita area, Roma)

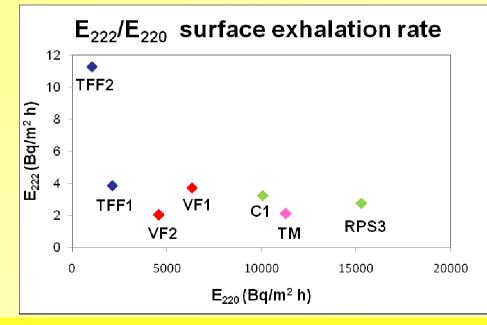

²²²Rn against ²²⁰Rn activity concentrations in soil gas measured at station RPS3 and C1 (Valle della Caffarella, Roma) and some further spot in the adjacent Tor Marancia site

Soil ²²²Rn fluctuations and monthly precipitation totals from January 2011 to June 2012 at Terme della Ficoncella area, Civitavecchia, Italy).

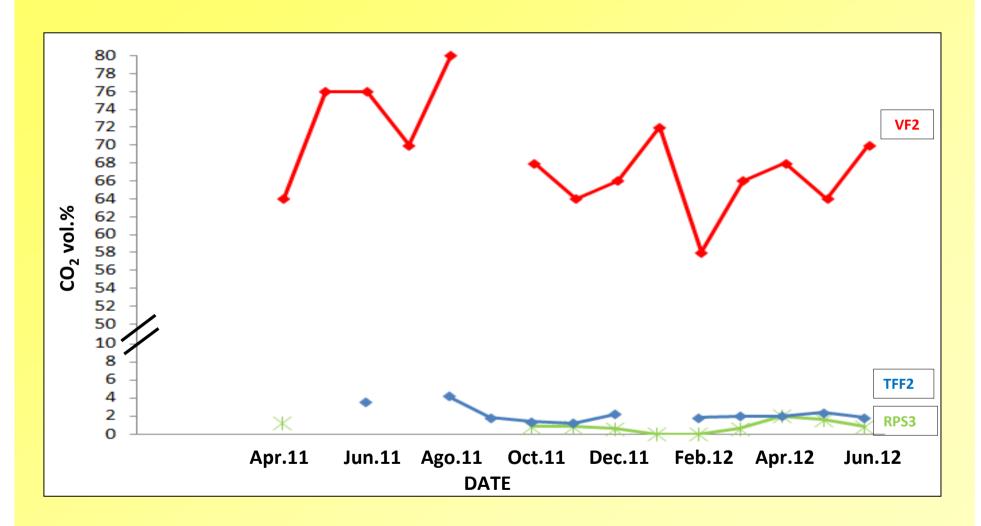

Soil ²²²Rn fluctuations and monthly precipitation totals from September 2008 to July 2010 at Valle della Caffarella area, Roma, Italy).



Soil ²²²Rn fluctuations and monthly precipitation totals from April 2011 to July 2012 at Vigna Fiorita area, Roma, Italy).



Results of laboratory experiments on soil samples: gamma spectrometry and exhalation rates



²²² Rn emanation coefficient			
TF12	0.50 ± 0.50		
TFF1	0.41 ÷ 0.48		
¥F2	1,38 + 1,61		
VF1	0.43 ÷ 0.50		
RP-53	0.40 + 0.47		
C1	0.39 ÷ 0.45		
TW	0.17=0.20		

Soil CO₂ fluctuation at Valle della Caffarella (RPS3), Terme della Ficoncella (TFF2) and Vigna Fiorita (VF2)

Conclusions

Advective flux indicators	Caffarella (RPS3)	Ficoncella (TFF2)	Vigna Fiorita (VF2)
-××Rn/××Rn soil gas	0.5	12.5	1.8
²²⁶ Ra/ ²³² Th content in soil samples	0.77	17.6	0.90
======================================	0.18 E=3	10,88 E-3	0,45 E=3

Advective flux indicators	Caffarella (RPS3)	Ficoncella (TFF2)	Vigna Fiorita (VF2)
-222 Rn seit gas (kBq/m²)	102	407	166
²²² Rn soil gas seasonal fluctuation	Very marked	Marked	Minimum
CO, concentration in soil gas (vol. %)	9.8	2.2	<u>\$</u>

Range of ²²²Rn emanation coefficients is:

• 0.40 ÷ 0.47 for **RPS3**;

• 0.50 ÷ 0.59 for **TFF2**;

• 1.38 ÷ 1.61 for **VF2**.

Radon transport is:

Diffusive

Diffusive and advective

Mainly Advective

Values higher than 0.5 ÷ 0.7 can be used to trace advective fluxes of deep gases (Schuman, 1993).