

A method to estimate the terrestrial component of ambient dose equivalent rate from EURDEP routine monitoring data to improve the European Geogenic Radon Map

> <u>Cinelli G., Hernandez-Ceballos M.A., Bossew P., Tollefsen T., Sanchez I.,</u> <u>Marín-Ferrer M., Nishev A., Bogučarskis K., Gruber V., De Cort M.</u>

Use of EURDEP data in the context of European Atlas of Natural Radiation

European Atlas of Natural Radiation (EANR)

MAPS

EURDEP Data

Data available in EURDEP (\approx 6,600 stations)

http://eurdepweb.jrc.ec.europa.eu/EurdepMap/Default.aspx

EURDEP Data

Contributions to the Ambient Dose Equivalent Rate (hereafter total- γ)

Constant

- Inherent background
- Cosmic dose rate
- Artificial gamma dose
 rate(¹³⁷Cs after Chernobyl)
- Terrestrial gamma dose rate (TGDR) (²³⁸U, ²³⁵U, ²³²Th families and ⁴⁰K)

Variable

- *["]* Airborne gamma dose rate
- " Wet deposition gamma dose rate
- "Radiological release

Sampling Area

The database of Slovenia has been taken as benchmark

- 54 stations
- ["] One year (2012) of total-γ data (30-minutes values measured)
- Monitoring devices: MFM-202 (in 15 stations) and MFM-203 (in 39 stations) both manufactured by AMES (Slovenia), supplied with two energy compensated GM probes of different sensitivities
- " All detectors are located 1 m above the ground
- Inherent background correction was applied by the data provider, subtracting a value of 68 nSv/h for both instruments

Sampling Area

• Copy of Slovenia EURDEP Stations Chosen2.csv Events

1. <u>Smoothing of total- γ to remove the short-term variations in the data</u> whilst preserving the medium-term trend

- Definition of the 75th percentile (P75) as the minimum threshold to select peaks with the highest concentrations
- 3. Identification of valley values corresponding to the lowest values before and after the selected peaks

- 4. <u>Estimation of the cosmic dose rate</u> considering the altitude value in each station the latitude and the longitude has not been taken into account.
- 5. <u>Subtraction of constant contribution</u>: cosmic contribution and the inherent background correction has been applied to the data.
- <u>Estimation of the TGDR</u>: the average of "net" valley values in time series has been considered to represent the estimated TGDR at 1 metre above the ground

European Commission

Statistics parameters of the estimated TGDR (nSV/h)

mean	54.57
median	52.86
Minimun	21.45
Maximun	123.09
1. Quartile	40.62
3. Quartile	83.92
Std. Dev.	19.38

The variability in the TGDR values between stations can be due to:

- different kind of detector
- irregularities in monitoring siting
- variation of radionuclide contents (geology)

Evaluation of the variation of TGDR explained by:

- a) Geology
- b) Detector type

European Commission

Monitoring stations grouped by geological unit										
Geological Unit				Geology	n. of	Geological Group				
261				Geology						
331	La	Percentag	e (%)	<u>0.24</u>	1					
313	Ladinian		Rhaetian	Limestone	1					
312		Induan	Tithonian	Dolomite	9					
400		Burdigalian Burdigalian Rupelian Priabonian	Piacenzian Serravallian Burdigalian Chattian	Clastic sediment, Limestone, Limestone Conglomerate Mud	4	A				
511		Pleistocene	Holocene	Clastic sediment	20					
561		Holocene	Holocene	Clastic sediment	Clastic sediment 16					
566	Holocene		Holocene	Mud	2					

Monitoring stations grouped by geological unit and type of detector

Geological Unit	Lower Age	Upper	Age	Lithology	Detector Type	n. of stations	Geological Group
312	Induan	Tithonian		Dolomite			
	Burdigalian	Piacenz	zian	Clastic sediment, Limestone,	MFM 203	10	A
400	Burdigalian Rupelian Priabonian	Serrava Burdiga Chatti	llian alian an	Limestone Conglomerate Mud	MFM 202	3	
511	Pleistocene	Holocene		Clastic sediment	MFM 203	26	
4			Detector Type				
			Geo	logical Group	A Geo	logical G	Group B
Percentage (%)		<u>7.86</u>			<u>2.15</u>		

- A method to estimate the TGDR from EURDEP routine monitoring γ-total data has been developed
- ["] It was applied to 54 stations of the Slovenia monitoring network
- The estimated TGDR ranges between 21 and 123 nSv/h with an average of 55 nSV/h
- The percentage of the variation of the TGDR explained by geology has been estimated to be 0.24% while in the two geological groups respectively 7.86 and 2.15% explained by detector type.
- " The method WILL BE APPLIED TO THE 6000 EURDEP STATIONS

Thank you very much for your attention

<u>Cinelli G.,</u> giorgia.cinelli@jrc.ec.europa.eu

