Using ²²²Rn/²²⁰Rn versus ²²⁶Ra/²³²Th activity ratio and CO₂ concentration in soil gas to trace advective fluxes

<u>Carlo Lucchetti¹</u>, Mauro Castelluccio¹, Gabriele De Simone¹, Paola Tuccimei¹

¹ Università ‰oma Tre+, Dipartimento di Scienze, Roma, Italy

RESEARCH FOCUS

Soil radon transport along fault systems where deep fluids uprise

DISCRIMINATION OF SOIL RADON TRANSPORT

- "Measurement of soil gas concentrations of ²²²Rn and ²²⁰Rn at 80 cm depth;
- " 222 Rn/ 220 Rn activity ratio (t_{1/2} very different);
- "Evaluation of seasonal soil ²²²Rn fluctuations;
- ^{" 226}Ra and ²³²Th contents in soil;
- ^{~ 222}Rn/²²⁰Rn versus ²²⁶Ra/²³²Th activity ratio;
- " Measurement of soil CO₂ concentrations at 80 cm depth (main radon carrier gas);
- "Determination of enrichment coefficient of radon;

SOIL RADON CONCENTRATION

- Geological subsurface nature (particle size, mineralogical composition, parent elements)
- ["] Soil gas permeability
- " Meteo-climatic parameters
- " Presence of faults, fractures or deep fluid uprise SOIL RADON TRANSPORT

DIFFUSIVE

(Fickø law)
$$f = -D \cdot \frac{dC}{dZ}$$

f = diffusive flow intensity (cm³cm⁻²s⁻¹); D = molecular diffusion coefficient (cm² s⁻¹); dC= gas concentration change in the system (m³/m³) along a length dz (m).

Radon source in the vicinity of the measurement point

²²²Rn/²²⁰Rn << ²²⁶Ra/²³²Th

ADVECTIVE

$$(Darcy \phi \ law) \quad v = k \cdot \frac{(-\Delta p + \gamma_g)}{\mu}$$

v = gas velocity (cm s⁻¹); k = permeability (m²); p = pressure variation along a vertical z (m); μ = gas dynamic viscosity (kg m s⁻¹); g = gas density (kg m⁻³).

Deep Radon source

$^{222}Rn/^{220}Rn > ^{226}Ra/^{232}Th$

INSTRUMENTS AND ANALYTICAL METHODS

SOIL GAS CONCENTRATION OF ²²²Rn AND ²²⁰Rn

Radon and thoron activity concentrations (at 80 cm depth): hollow probe (1) (Radon v.o.s. corp.) attached (2) to a drying unit (3) and to the continuous radon monitor (4) (RAD7 Durridge Co.), connected in series.

SOIL CO₂ CONCENTRATION

CO₂ concentration (at 80 cm depth): **infrared detector** (Dräger X-am 7000)

²²⁶Ra AND ²³²Th CONTENT IN SOIL

- spectrometer with Hyper Pure Germanium detector (**HPGe**)

SOIL GAS MEASUREMENTS ACROSS CIVITAVECCHIA FAULT

DNAL WORKSHOP GARRIM, September 16" E 18" 2014 Prague, Cze

RESULTS FROM VIGNA FIORITA (CIAMPINO)

Degassing of this area occurs at faults of the Ciampino carbonate high that acts as a reservoir for large quantities of gases (primarily composed of CO_2 , H_2S and radon) deriving from deep residual magmatic activity. These gases represent a high risk of indoor gas accumulation for the inhabitants of the area.

 226 Ra/ 232 Th õVilla Doria Unitö = 0.54

SOIL GAS MEASUREMENTS ACROSS VIGNA FIORITA FAULT

 226 Ra/ 232 Th õTavolato Unitö = 1.4

PROFILE 1:

8 measures, 180 m length, 20 m equidistance

PROFILE 2:

8 measures, 100 m length, 15 m equidistance

RESULTS FROM FIUMICINO

In the Fiumicino area in August 2013, two boreholes at 35m depth, caused a gas blowout from a pressurized clayconfined gas pocket. Other past events of this type have also been reported in the area with gases mainly composed of CO_2 with traces of CH_4 and H_2S .

(Ciotoli et al.,2013)

Soil gas measurements have been carried out on active pools in the roundabout (1) and on the adjacent area to the north (2, called circus land).

²²²Rn/²²⁰Rn MAP VS CO₂ CONCENTRATION IN THE ROUNDABOUT

²²²Rn/²²⁰Rn MAP VS CO₂ CONCENTRATION IN THE õCIRCUS LANDö

RADON TRANSPORT IN THIS AREA

 226 Ra/ 232 Th Backfill = 1.07 (roundabout)

- ✓ radon transport *mainly diffusive;*
- ✓ some measuring points have *diffusive* and advective mechanism;
- ✓ theese measuring points are located near gas blowout

 226 Ra/ 232 Th Sand = 11.7 (circus land)

radon transport strictly diffusive;

✓ large disequilibrium between ²²⁶Ra and ²³²Th in the soil;

✓ in the three hotspots there is increase in the advective component where the highest soil CO_2 concentrations were recorded.

ASSESSMENT OF ENRICHMENT COEFFICIENT

Generally **Radon Emanation** is the number of atoms of radon leaving the solid material divided by the amount generated from the sample. Where values higher than 0.5 - 0.7 can be used to trace advective fluxes of deep gases (Schuman, 1993).

In this study, we also obtained values greater than 1, which is actually an indication of **Radon Enrichment.**

Enrichment Coefficient $E.C. = \frac{C_{222Rn}}{C_{226Ra}}$				where: $C 222_{Rn} = \text{soil radon activity concentration (Bq/m3);}$ $C 226_{Ra} = \text{soil } ^{226}\text{Ra content (Bq/kg);}$ = soil density (kg/m3).		
ID measurements point	soil ²²² Rn (Bq/m ³)	²²⁶ Ra (Bq/kg)	E.C. (1200 kg/m ³ soil density)	E.C. (1400 kg/m ³ soil density)	soil CO ₂ (vol.%)	Soil Radon transport
VF1 Vigna fiorita*	72000	57.5	1.04	0.89	4.7	Diffusive-advective mixed
VF2 Vigna fiorita*	169880	43.0	3.29	2.82	70.1	Strictly advective
TFF1 T. Ficoncella*	128000	91.8	1.18	1.00	1.6	Diffusive-advective mixed
TFF2 Ficoncella*	382270	224.1	1.42	1.22	2.1	Diffusive-advective mixed
Roundabout MIN Fiu.	6180	28.1	0.18	0.15	1.6	Diffusive
Roundabout MAX Fiu.	29150	28.1	0.86	0.74	88	Diffusive-advective mixed
Circus (MIN) Fiu.	1200	31.4	0.03	0.03	0.2	Diffusive
Circus (MAX) Fiu.	5780	31.4	0.15	013	88	Diffusive
*three years monitoring at permanent stations on a monthly basis						
12th INTERNATIONAL WORKSHOP GARRM, September 16th E 18th 2014 Prague, Croch Popublic						

CONCLUDING REMARKS

- Faults and fractures are preferential pathways for strictly advective ²²²Rn uprise from deep sources.
- Advective movement is favoured by the presence of the carrier gas (CO₂), capable of carrying the radon from deeper to more superficial areas.
- For the recognition of deep sources the signal given by the ²²⁰Rn is important, as the concentration tends to decrease significantly because of its low half-life.
- ²²²Rn/²²⁰Rn ratio signal, together with the knowledge of the soil content of ²³²Th and ²²⁶Ra of a given area is a stronger signal than the soil ²²²Rn concentration on its own.
- Evaluation of both the soil gases and its intrinsic permeability are vital for the investigation of unconformities and for risk assessment of indoor environments.

Thank you for your attention

