Using $^{222}\text{Rn}/^{220}\text{Rn}$ versus $^{226}\text{Ra}/^{232}\text{Th}$ activity ratio and CO$_2$ concentration in soil gas to trace advective fluxes

Carlo Lucchetti1, Mauro Castelluccio1, Gabriele De Simone1, Paola Tuccimei1

1Università “Roma Tre” Dipartimento di Scienze, Roma, Italy

12th INTERNATIONAL WORKSHOP GARRM, September 16th – 18th 2014 Prague, Czech Republic
RESEARCH FOCUS

Soil radon transport along fault systems where deep fluids uprise

DISCRIMINATION OF SOIL RADON TRANSPORT

- Measurement of soil gas concentrations of ^{222}Rn and ^{220}Rn at 80 cm depth;
- $^{222}\text{Rn}/^{220}\text{Rn}$ activity ratio ($t_{1/2}$ very different);
- Evaluation of seasonal soil ^{222}Rn fluctuations;
- ^{226}Ra and ^{232}Th contents in soil;
- $^{222}\text{Rn}/^{220}\text{Rn}$ versus $^{226}\text{Ra}/^{232}\text{Th}$ activity ratio;
- Measurement of soil CO$_2$ concentrations at 80 cm depth (main radon carrier gas);
- Determination of enrichment coefficient of radon;
SOIL RADON CONCENTRATION

- Geological subsurface nature (particle size, mineralogical composition, parent elements)
- Soil gas permeability
- Meteo-climatic parameters
- Presence of faults, fractures or deep fluid uprise

SOIL RADON TRANSPORT

DIFFUSIVE

\[f = -D \cdot \frac{dc}{dz} \]

- \(f \) = diffusive flow intensity (cm³ cm⁻² s⁻¹);
- \(D \) = molecular diffusion coefficient (cm² s⁻¹);
- \(\frac{dc}{dz} \) = gas concentration change in the system (m³/m³) along a length \(dz \) (m).

ADVECTIVE

\[v = k \cdot \frac{(-\Delta p + \gamma g)}{\mu} \]

- \(v \) = gas velocity (cm s⁻¹);
- \(k \) = permeability (m²);
- \(\Delta p \) = pressure variation along a vertical \(z \) (m);
- \(\mu \) = gas dynamic viscosity (kg m s⁻¹);
- \(\gamma g \) = gas density (kg m⁻³).

Radon source in the vicinity of the measurement point

Deep Radon source

\[^{222}\text{Rn} / ^{220}\text{Rn} \ll ^{226}\text{Ra} / ^{232}\text{Th} \]

\[^{222}\text{Rn} / ^{220}\text{Rn} > ^{226}\text{Ra} / ^{232}\text{Th} \]
GEOLOGICAL SETTING

SITE	GEOLOGICAL BEDROCK
Terme della Ficoncella | Travertines and Flysch sediments
Fiumicino | Pleistocene-Holocene sediments (Tiber Delta plain)
Vigna Fiorita | Lahar flows and ignimbrites of the Colli Albani Complex
Radon and thoron activity concentrations (at 80 cm depth): hollow probe (1) (Radon v.o.s. corp.) attached (2) to a drying unit (3) and to the continuous radon monitor (4) (RAD7 Durridge Co.), connected in series.
RESULTS FROM TERME DELLA FICONCELLA (CIVITAVECCHIA)

Travertine $^{226}\text{Ra}/^{232}\text{Th} = 6.14$

- Rich soil in ^{226}Ra and poor in ^{232}Th;
- $^{226}\text{Ra}/^{232}\text{Th} = 6.14$
- $^{222}\text{Rn}/^{220}\text{Rn}$ activity ratio
- TFF1 and TFF2 permanent station
- TFF1: mean CO_2 - 1.6 vol.%;
- TFF2: mean CO_2 - 2.1 vol.%;
- TFF1 radon transport predominantly diffusive;
- TFF2 radon transport diffusive and advective;
SOIL GAS MEASUREMENTS ACROSS CIVITAVECCHIA FAULT

$^{226}\text{Ra}/^{232}\text{Th}$ Flysch = 1.13

Measures distance (m)

$^{226}\text{Ra}/^{232}\text{Th}$ Flysch = 1.13

$^{226}\text{Ra}/^{232}\text{Th}$ Flysch = 1.13

$^{226}\text{Ra}/^{232}\text{Th}$ Flysch = 1.13

Measures distance (m)

$^{226}\text{Ra}/^{232}\text{Th}$ Flysch = 1.13

Measures distance (m)

$^{226}\text{Ra}/^{232}\text{Th}$ Flysch = 1.13

CO$_2$(vol.%)
Degassing of this area occurs at faults of the Ciampino carbonate high that acts as a reservoir for large quantities of gases (primarily composed of CO$_2$, H$_2$S and radon) deriving from deep residual magmatic activity. These gases represent a high risk of indoor gas accumulation for the inhabitants of the area.

\[\frac{^{226}\text{Ra}}{^{232}\text{Th}} \text{ of Villa Doria Unit} = 0.54 \]

RESULTS FROM VIGNA FIORITA (CIAMPINO)

VF1 and VF2 permanent station
✓ significant differences in 222Rn and CO$_2$ concentrations and in the seasonal variability;

✓ VF1: mean CO$_2$ - 4.7 vol.%;
✓ VF2: mean CO$_2$ - 70.1 vol.%;

✓ VF1: radon transport diffusive and advective;
✓ VF2 radon transport strictly advective.
SOIL GAS MEASUREMENTS ACROSS VIGNA FIORITA FAULT

PROFILE 1:
8 measures, 180 m length, 20 m equidistance

PROFILE 2:
8 measures, 100 m length, 15 m equidistance

$^{226}\text{Ra}/^{232}\text{Th}$ \tilde{n}Tavolato Unit\tilde{o} = 1.4

(Giordano et al., 2009)

12th INTERNATIONAL WORKSHOP GARRM, September 16th – 18th 2014 Prague, Czech Republic
SOIL GAS MEASUREMENTS ACROSS VIGNA FIORITA FAULT

PROFILE 1:
8 measures, 180 m length, 20 m equidistance

PROFILE 2:
8 measures, 100 m length, 15 m equidistance

\(^{226}\text{Ra}/^{232}\text{Th} \sim \text{Tavolato Unit}= 1.4\)
SOIL GAS MEASUREMENTS PROFILES ACROSS VIGNA FIORITA FAULT

Location of profiles

AR1
AR2
AR3
AR4
AR5
AR6

226Ra/232Th ratio map

CO₂ concentration map

AR1
226Ra/232Th 1.4

AR3

AR5

AR2
226Ra/232Th 1.4

AR4

AR6

INTERNATIONAL WORKSHOP GARRM, September 16th – 18th 2014 Prague, Czech Republic
In the Fiumicino area in August 2013, two boreholes at 35m depth, caused a gas blowout from a pressurized clay-confined gas pocket. Other past events of this type have also been reported in the area with gases mainly composed of CO$_2$ with traces of CH$_4$ and H$_2$S.

Soil gas measurements have been carried out on active pools in the roundabout (1) and on the adjacent area to the north (2, called circus land).
222Rn/220Rn MAP VS CO₂ CONCENTRATION IN THE ROUNDABOUT

Parameter Statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{222}Rn (Bq/m^3)</td>
<td>6180</td>
<td>29150</td>
<td>11760</td>
<td>4070</td>
</tr>
<tr>
<td>$^{222}\text{Rn}/^{220}\text{Rn}$</td>
<td>0.05</td>
<td>1.04</td>
<td>0.27</td>
<td>0.24</td>
</tr>
<tr>
<td>CO_2 (vol.%)</td>
<td>1.6</td>
<td>88</td>
<td>25.9</td>
<td>25.65</td>
</tr>
</tbody>
</table>

Legend:
- **Main blowout**
- **Secondary blowout**
- Soil gas measure point with CO₂ value
Table 1: Parameter range and statistical values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>St. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>222Rn (Bq/m3)</td>
<td>1200</td>
<td>5780</td>
<td>3690</td>
<td>1080</td>
</tr>
<tr>
<td>222Rn/220Rn</td>
<td>0.1</td>
<td>1.45</td>
<td>0.24</td>
<td>0.27</td>
</tr>
<tr>
<td>CO$_2$ (vol.%)</td>
<td>0.2</td>
<td>88</td>
<td>7.22</td>
<td>21.67</td>
</tr>
</tbody>
</table>

222Rn/220Rn MAP VS CO$_2$ CONCENTRATION IN THE CIRCUS LANDò

Legend:
- Soil gas measure point with CO$_2$ value
- Main gas blowout
- Secondary gas blowout

12th INTERNATIONAL WORKSHOP GARRM, September 16th – 18th 2014 Prague, Czech Republic
Radon transport mainly diffusive;

- some measuring points have diffusive and advective mechanism;
- theese measuring points are located near gas blowout.

Radon transport strictly diffusive;

- large disequilibrium between ^{226}Ra and ^{232}Th in the soil;
- in the three hotspots there is increase in the advective component where the highest soil CO$_2$ concentrations were recorded.
ASSESSMENT OF ENRICHMENT COEFFICIENT

Generally **Radon Emanation** is the number of atoms of radon leaving the solid material divided by the amount generated from the sample. Where values higher than 0.5 - 0.7 can be used to trace advective fluxes of deep gases (Schuman, 1993).

In this study, we also obtained values greater than 1, which is actually an indication of **Radon Enrichment**.

\[
E.C. = \frac{C_{222Rn}}{C_{226Ra} \cdot \rho}
\]

where:
- \(C_{222Rn} \) = soil radon activity concentration (Bq/m³);
- \(C_{226Ra} \) = soil \(^{226}\text{Ra} \) content (Bq/kg);
- \(\rho \) = soil density (kg/m³).

<table>
<thead>
<tr>
<th>ID measurements point</th>
<th>soil (^{222}\text{Rn}) (Bq/m³)</th>
<th>(^{226}\text{Ra}) (Bq/kg)</th>
<th>E.C. ((\rho) 1200 kg/m³ soil density)</th>
<th>E.C. ((\rho) 1400 kg/m³ soil density)</th>
<th>soil CO₂ (vol. %)</th>
<th>Soil Radon transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF1 Vigna fiorita*</td>
<td>72000</td>
<td>57.5</td>
<td>1.04</td>
<td>0.89</td>
<td>4.7</td>
<td>Diffusive-advective mixed</td>
</tr>
<tr>
<td>VF2 Vigna fiorita*</td>
<td>169880</td>
<td>43.0</td>
<td>3.29</td>
<td>2.82</td>
<td>70.1</td>
<td>Strictly advective</td>
</tr>
<tr>
<td>TFF1 T. Ficoncella*</td>
<td>128000</td>
<td>91.8</td>
<td>1.18</td>
<td>1.00</td>
<td>1.6</td>
<td>Diffusive-advective mixed</td>
</tr>
<tr>
<td>TFF2 Ficoncella*</td>
<td>382270</td>
<td>224.1</td>
<td>1.42</td>
<td>1.22</td>
<td>2.1</td>
<td>Diffusive-advective mixed</td>
</tr>
<tr>
<td>Roundabout MIN Fiu.</td>
<td>6180</td>
<td>28.1</td>
<td>0.18</td>
<td>0.15</td>
<td>1.6</td>
<td>Diffusive</td>
</tr>
<tr>
<td>Roundabout MAX Fiu.</td>
<td>29150</td>
<td>28.1</td>
<td>0.86</td>
<td>0.74</td>
<td>88</td>
<td>Diffusive-advective mixed</td>
</tr>
<tr>
<td>Circus (MIN) Fiu.</td>
<td>1200</td>
<td>31.4</td>
<td>0.03</td>
<td>0.03</td>
<td>0.2</td>
<td>Diffusive</td>
</tr>
<tr>
<td>Circus (MAX) Fiu.</td>
<td>5780</td>
<td>31.4</td>
<td>0.15</td>
<td>0.13</td>
<td>88</td>
<td>Diffusive</td>
</tr>
</tbody>
</table>

*three years monitoring at permanent stations on a monthly basis

12th INTERNATIONAL WORKSHOP GARRM, September 16th – 18th 2014 Prague, Czech Republic
CONCLUDING REMARKS

- Faults and fractures are preferential pathways for strictly advective 222Rn uprise from deep sources.

- Advective movement is favoured by the presence of the carrier gas (CO$_2$), capable of carrying the radon from deeper to more superficial areas.

- For the recognition of deep sources the signal given by the 220Rn is important, as the concentration tends to decrease significantly because of its low half-life.

- 222Rn/220Rn ratio signal, together with the knowledge of the soil content of 232Th and 226Ra of a given area is a stronger signal than the soil 222Rn concentration on its own.

- Evaluation of both the soil gases and its intrinsic permeability are vital for the investigation of unconformities and for risk assessment of indoor environments.
Thank you for your attention