Assessment of subsoil and groundwater contamination from NAPL (Non-Aqueous Phase Liquids) using soil radon

(1)*De Simone G., (1)Lucchetti C., (1)Castelluccio M., (1)Tuccimei P., (2)Curatolo P., (2)Giorgi R., (2)Calì A.

(1)"Roma Tre" University Dip. Scienze – Sez. Geologia Gabriele.desimone@uniroma3.it *speaker

(2) in collaboration with Golder Associates S.r.l. - Roma

FOCUS

THIS STUDY IS RELATED TO A NEW ANALYSIS TECHNIQUE FOR HYDROCARBON POLLUTED SITES THROUGH THE USE OF RADON GAS.

The focus of our work is the characterization of one or more selected study-areas suffering NAPL pollution, using only low-cost surface Radon-concentration analyses, to identify and constrain localized substratum polluted sites.

Why is 222Rn a NAPL-tracer?

Radon has a high solubility in a wide range of NAPL, so as to form negative anomalies concentration in the soil where the presence of these pollutants is observed

K = NAPL/air

NAP 100. 80. Rn [%] 20. M. Schubert et al. 2002

INSTRUMENTS

Determination of soil radon

INSTRUMENTS

Determination of CO₂ e CH₄ concentration

INSTRUMENTS

Determination radon in water

INSTRUMENTS Determination of soil permeability

Neznal & Neznal, 2005

- V: air volume in the expandamble cell
- μ: air dynamic viscosity at 10°C
- F: shape factor of the hollow rod inside the ground

 Δp : pressure difference between the surface and the active area of the probe

t: opening cell time

The time of opening of the expandable cell is related to the intrisic soil permeability (k)

 $k = \frac{(V * \mu)}{(F * \Delta p * t)}$

5,2 E-14 m² – 1,8-11 m² Low:K < 4 E-13 m²

Medium: 4 E-13 m² < K < 4 E-12 m²

High K > 4 E-12 m²

INSTRUMENTS Determination of soil permeability

Study area

31 mesurements were carried out at 80 cm depth, in this area of 2980 m², to investigate on concentrations of: "Radon "Thoron "CO₂ "CH₄ "permeability

Viaduct

Permanent Station

Permanent sensors of temperature and humidity – at 30cm and 80 cm depth

12th INTERNATIONAL WORKSHOP GARRM, September 16th Ë18th 2014 Prague, Czech Republic

12th INTERNATIONAL WORKSHOP GARRM, September 16th Ë18th 2014 Prague, Czech Republic

Laboratory experiment

Thank you for your attention

REFERENCES

BARTON, A. F. M., 1991. Handbook of solubility parameters and other cohesion parameters nd ed., CRC Boca Raton/FL/USA.

"

"

"

"

"

"

"

"

"

- CLEVER, H. L. (Ed.), 1979. Solubility data series volume 2: Krypton, Xenon and Radon-gas solubilities, IUPAC, Pergamon, Oxford/UK.
- DAVIS, B.M., J.D. ISTOK, and L. SEMPRINI. 2002. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. Journal of Contaminant Hydrology 58, 129–146.
- GARCÍA-GONZÁLEZ J.E., ORTEGA M.F., CHACÓN E., MAZADIEGO L.F., DE MIGUEL E., 2008. Field validation of radon monitoring as a screening methodology for NAPL-contaminated sites. Applied Geochemistry 23 (2008) 2753–2758.
- LEWIS, C., P. K. HOPKE and J. STUKEL, 1987. Solubility of radon in selected perfluorocarbon compounds and water. Industrial Engineering & Chemical Research 26, 356-359.
- MARRIN, D. L., 1987. Soil gas analysis of methane and carbon dioxide: Delineating and Monitoring Petroleum Hydrocarbons. Proceedings of the Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, National Ground Water Association/American PetroleumInstitute.
- MARRIN, D. L. and H. B. KERFOOT, 1988. Soil-gas surveying techniques A new way to detect volatile organic contaminations in the subsurface. Environ. Sci. Technol. 22 (7), 740 745.
- SCHROTH, M.H., J.D. ISTOK, and R. HAGGERTY. 2000. In situ evaluation of solute retardation using single-well pushpull tests. Advances in Water Resources 24, 105–117.
- SCHUBERT, M., K. FREYER, H. C. TREUTLER and H. WEISS, 2000. Radon as an indicator of subsurface NAPL contamination. In: Rosbjerg et al. (Eds.) Groundwater 2000, Balkema, Rotterdam/NL, pp. 127- 128.
- SCHUBERT, M., FREYER, K., TREUTLER, H.C., WEISS, H., 2002. Using radon-222 in soil gas as an indicator of subsurface contamination by non-aqueous phase liquids (NAPLs). Geofísica Int. 41, 433–437.

12th INTERNATIONAL WORKSHOP GARRM, September 16th Ë18th 2014 Prague, Czech Republic