

Remapping radon potential of SW England: Assessment of the differences between 2006 and 2014 Radon Potential maps.

António Ferreira¹

Zori Daraktchieva², J.D. Appleton¹, P. Turner¹, Mark Cave¹ ¹British Geological Survey, ²Public Health England

Remapping radon potential of SW England: Assessment of the differences between 2006 and 2014 Radon Potential maps.

Outline of talk

1. Radon Potential Mapping in the UK

2. Differences between 2006 and 2014 in the SW England

in the UK, a radon potential map is made by

Public Health England (PHE) and **British Geological Survey** (BGS)

... shows the

spatial variation of the **probability** of dwellings exceeding the Radon Action Level (**200** Bq m⁻³)

... based on

indoor radon measurements (PHE) (~500,000 measurements until 2006; 1 m accuracy for location of

houses via Ordnance Survey AddressPoint)

and

geology (BGS)

(1:50,000 scale)

Geology 1:50,000 scale (BGS)

Simplified 1:50,000 bedrock geology (BED) Seamless geological classification required for geological radon potential mapping

Gridding Methods used for estimating percentage of dwellings above AL for each KM1COM polygon (SW England)

Lognormal modelling applied in all radon mapping

Method	No. of Rn measurements in each COM	Description of method used to estimate RnP (%>200 Bq m ⁻³)		
Grid (G1a) Grid (G1b)	>99	RnP based on GM and GSD of the nearest 30 Rn measurements in the same COM (G1a) or all measurements inside the same KM1COM polygon(s) if its number of Rn measurements > 30 (G1b) ; Bayesian KM1COM GSD corrected for measurement uncertainty		
(M2)	25 – 99	RnP based on GM of the nearest 10 measurements; GSD is average of study area COM GSD and KM1COM GSD both corrected for measurement uncertainty		
(M3)	10 – 24	RnP based on GM of all data in the same COM group in SW England; GSD is average of UK national GSD (2.27) and study area COM GSD both corrected for measurement uncertainty		
(M4)	3-9	RnP based on GM of all data in the same COM group in SW England and UK national GSD corrected for measurement uncertainty (2.27)		
(M5)	0-2	Assessment of RnP based on analogy with similar geological combinations for which radon data are available		

COM: geological combination; GM: geometric mean; GSD: geometric standard deviation

Remapping radon potential of SW England: Assessment of the differences between 2006 and 2014 Radon Potential maps.

Outline of talk

- 1. Radon Potential Mapping in the UK
- 2. Differences between 2006 and 2014 in the SW England

How can we compare the two RnP maps

after creating a file with both datasets:

(subdividing the original polygons if necessary)

RnP2006 and RnP2014 were **UNION**ed (ArcGIS 10.1 tool), resulting a file with **123002** polygons (from 115345, 119898)

- reporting all the required original information from 2006 and 2014 such as the geological combinations (COMs), the KM1COMs and the radon statistics
- It remains possible to account with the **polygon size** (area) in the data analysis

DIFF = RnP14 - RnP06

Absolute Difference: |**DIFF**| = **abs**(**RnP14 - RnP06**)

Some **basic statistics** of the Radon Potential maps of 2006 (RnP2006) and 2014 (RnP2014), and the difference (DIFF) and the absolute difference (|DIFF|) of 2014 relative to 2006.

Statistics	RnP2006	RnP2014	DIFF	DIFF	Area	
Min	0.001	0.001	-86.04	0.00		
02p	0.03	0.03	-17.05	0.00	3.7	
05p	0.12	0.10	-8.96	0.03	7.4	
10p	0.32	0.26	-4.45	0.09	12.9	
25p	1.02	0.87	-0.97	0.34	30.0	
Mdn	3.09	3.29	0.00	1.37	54.0	
75p	11.70	14.01	1.97	4.63	75.4	
90p	31.21	35.94	8.09	11.31	90.7	
95p	48.80	49.80	13.39	17.11	95.5	
98p	64.80	66.28	20.08	25.31	97.9	
Max	99.38	98.40	70.95	86.04	100.0	
IQR	10.69	13.14	2.94	4.28		
Mean	10.42	11.19	0.77	3.97		
SD	16.40	17.01	7.40	6.30		
Skewness	2.48	2.21	0.18	2.92		
Kurtosis	6.38	4.87	9.50	11.24		

Understanding the Differences

Contributing factors

to the unexplained variation budget (18.6):

(in a linear regression with raw RnP data)

Differences a priori from 2006 to 2014 in SW England

No of Rn measurements:

2006: 173,1922014: 230,955

an increase of **57,763** (33%)

	2006				2014			
Method	Ν	N%	Area	Area%	N	N%	Area	Area%
Grid (G1a)	98003	85.0	9013167638	88.8	109341	91.2	9037930731	89.1
Grid (G1b)	4013	3.5	684268458	6.7	5511	4.6	853856542	8.4
(G1a) + (G1b)	102016	88.4	9697436096	95.6	114852	95.8	9891787273	97.5
(M2)	-	-	-	-	2011	1.7	151388632	1.5
(M3)	-	-	-	-	1395	1.2	57146850	0.6
(M4)	-	-	-	-	418	0.3	18066946	0.2
(M5)	-	-	-	-	1222	1.0	29758625	0.3
(M2) to (M5)	13329	11.6	450102928	4.4	5046	4.2	256361052	2.5
Total	115345	100	10147539025	100	119898	100	10148148325	100

No. (N) of polygons and corresponding area (Area) estimated by each mapping method

Differences a priori from 2006 to 2014 in SW England

COM codes revised searching for:

- 2006 misclassifications;
- **tile boundary** (and intratile) incompatibilities;
- **non-compatibilities** with the new 1:625k bedrock map

Estimating the contribution of identified factors

using R² and UV (1- R²) from LINEAR REGRESSION of RnP14 with RnP06

(LL=0.1, Area not taken into account) 1st and 2nd attempts

(**R²**=) **81.4%** of the variance of RnP₁₄ is **explained** by the RnP₀₆ Unexplained Variance (N=123002): 100-R²=100-81.4=**18.6%**

(a) 11.9? (out of 18.6, 64.0%) estimate of the local to regional variability due to the new Rn measurements:

(a1) 2.8 to 3.3 (out of 18.6) estimate of the LOCAL (intra 1Km²) variability due to the new Rn measurements;

(a2) 8.6 to 9.1? (out of 18.6) estimate of the REGIONAL (intra COM) variability due to the new Rn measurements.

(b) an estimated maximum increasing of 2.5 (out of 18.6, 13.4%) is related to the methods M2 to M5 used for NGrid polygons.

(c) 4.2?(out of 18.6, 22.6%) estimate of the variability added to (a) due to changes in geology.

(c1) 0.8 to 2.5 (2.3) relates to the 3 new 1:50k geological maps

(c2) 1.7 to 3.4 (4.8)? relates to changes in grouping geology in the geologic combinations (COMs).

A second approach after a LogRatio transformation:

RnP14 * A

A second approach after a LogRatio transformation:

Estimating the contribution of identified factors using R² and UV (1- R²) from LINEAR REGRESSION of RnP14 with RnP06 after a LogRatio transformation $Log_{10} \frac{RnP*A}{100M-RnP*A}$ 1st and 2nd attempts : (R^2 =) 87.9% of the variance of LR(RnP₁₄*A) is explained by the LR(RnP₀₆*A) Unexplained Variance (N=123002): 100-R²=100-87.9=12.1% (a) 4.7 (out of 12.1, 38.8%): estimate of the local to regional variability due to the new Rn measurements: (a1) 1.5 to 2.3 (out of 12.1): estimate of the LOCAL (intra 1Km²) variability due to the new Rn measurements; (a2) 2.4 to 3.2 (out of 12.1): estimate of the REGIONAL (intra COM) variability due to the new Rn measurements. (b) an estimated maximum increasing of 1.1 (out of 12.1, 9.1%) is related to the methods M2 to M5 used for NGrid polygons. (c) 6.3 (out of 12.1, 52.1%): estimate of the variability added to (a) due to changes in geology. (c1) 0.5 to 1.1 : relates to the 3 new 1:50k geological maps (c2) 5.2 to 5.8 : relates to the changes in the geological combinations (COMs).

