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Content

• Motivation:
Why is this so important?

• Sources of uncertainty

• Consequences & how to deal with?
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Indoor radon - essentials

odourless, tasteless, colourless...

[LARUC Uni Cantabria]



slide 4 of 23

Reminder: RPA definitions
Some examples of operable RPA definitions, based on different Rn measures:

• An area B (grid cell, municipality…), in which the mean population-weighted indoor 
concentration C exceeds the reference level (RL); AMB(C)>RL; measure = AMB

• same, but indoor concentration in dwellings on ground floor

• An area B, in which the probability that C exceeds the RL, is greater than p (typically 10%); 
probB(C>RL)>p; measure = probB

• The areas B which represent the upper 10% of AMB(C); measure = percentile

• An area, in which the collective exposure (e.g., AMB(C)×population) is among the upper 10% 

Important:
There is no “natural” definition of RPA! Therefore, also no “true” RPA!
RPAs always depend on definition and to some extent, on estimation method.
This is partly a political decision, partly a pragmatic one (i.e., availability of data).

Multinomial:

Instead of 2 classes (RPA / non-RPA), several classes of “Rn-priorityness”; approach chosen by some 
countries.

Multivariate:

Although the BSS definition relies on indoor Rn concentration, one may chose to base estimation 
on other Rn-related variables instead or additionally. Examples:  geogenic Rn potential, U 
concentration in the ground, terrestrial gamma dose rate, geological unit, tectonic features etc. 



Definition  Estimation

No matter how defined... 

RPAs have to be estimated ...

... done with available data ...

... using a certain method.

Data, estimation method and actual performing 
estimation are prone to errors and uncertainty.
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Data
Data are always

dirty, noisy, incorrect, erroneous, 
incomplete, ill-defined, uncertain.

Data as observations:
- measurement uncertainty (not only counting uncertainty! Sampling

and measurement procedures include uncertainty, sometimes this is 
the most important part, but difficult to quantify)

- “semantic” uncertainty 
(Value reported ground-floor measurement, in fact first floor,...)

- wrong (e.g., geology wrongly classified)

- sloppiness errors (manual copying of data, wrong insertion into table, 
Excel misreads decimal point, x and y coordinates confused,...)

Data as samples from a population:
- not representative 

(relevant if the target is a statement about the population!)

- finite / limited sample size  estimation uncertainty
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Sample size effect:
A numerical experiment, 1
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The municipality Gigritzpatschen (AT),
Rn concentrations in all N=1004 houses.
Quite realistic!

In a survey, we cannot measure all 
houses, but a number n, selected 
randomly. I.e., a representative sample in 
the best case.

Declare an area (U) RPA, if in U:
probU(z>200)>0.1
Areas U: quadratic fractions of the 
municipality.

AM=122
SD=81
GM=107
GSD=1.65
p>200: 5.48%
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Sample size effect:
A numerical experiment, 2

Finite population! (Statistically  sample without replacement)

Question: For given sampling rate, assuming representative (random) 
sampling, which is the error rate of estimated RPA status?
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method: many virtual 
“sampling campaigns” (2000-
5000 realizations), calculate 
FP and FN rates of estimated 
RPA status

Even for high sampling rate, error chance can be high!
This is the case, 
if a cells contains few houses / if true variability is high / if true p is close to class limit.

in this cell, 
p(true)=0.0980.1!



Variability and uncertainty

A quantity Z can be truly variable in space or time... (typical for 
Rn quantities, as for most environmental quantities!)

Take a sample of the quantity from a given space or time 
interval, {z1,...,zn}

True mean of Z ...  M, true SD .... S

sample mean AM(zi) .... m, sample SD(zi) ... s, estimates of M 
and S.

Uncertainty of the sample mean .... unc(m) = s/n
= consequence of variability (s) (sample size, QA)

Variability = natural, irreducible!

Uncertainty of estimate: can be reduced (sample size, QA)  
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Methods – 1: complexity
Methods are almost always

simplistic, idealization of a situation, make possibly unrealistic 
assumptions.

simplistic: not all relevant controls considered

some typical unrealistic / idealistic assumptions:
- normal distribution (also LN often idealization!), 
- homoscedasticity, 
- statistical independence (to be able to use CLT), 
- infinite sample,
- sample with replacement from finite population while it
should be without, 

- uncertainty of predictor ignored 
(regression! – leads to biased estimates of regression coefficients)
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Ex.: simplification & sample size
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Methods – 2: diversity

Normally, “the true” method does not exist. In many cases, different methods or 
models are conceivable, which are all “more or less” correct. Results may be 
different.

Naturally, one would look for the “best” model, to be chosen by some validation 
procedure. 

But:

• Different validation criteria may lead to preference of different models. 
(Accuracy, precision, 1st / 2nd kind error rates, cross-validation correlation, 
RMSE, other metrics?)

• The best available model may not be the best possible (which is not known).

• To avoid overfitting, one may remove predictors

• For practical reasons, one may opt for a compromise between model 
complexity and correctness.
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Choice of model  structural uncertainty
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Tentative Taxonomy of estimation approaches

spatial correlation not considered spatial correlation considered

u
n

ivariate

• sample stat, stat(z)
• enhanced by assuming univar. 

distribution, e.g. LN, stat’(z)
 cut-off, I(stat(z))

• geostat. model & cut-off, I(Z*)
• indicator kriging (hard/soft), I*(z)

m
u

ltivariate

• ANOVA type
• logistic-type regression, logi(z)=g(y)
• geographically weighted, local 

regression etc.
 cut-off, I(f(y))
• full bivariate through copula
• cross-classification

• co-kriging et al. & cut-off, I(Z*;y)
• regression kriging & cut-off, 

I(f*(y))
• indicator regression kriging, 

I*(f(y))
• indicator co-kriging, I*(z;y)
• machine learning

I – indicator according RPA class definition; more complicated for multinomial class  I1, I2,..
* - interpolation, e.g. kriging type
z, y – primary and secondary variables

certainly not complete!



Example : European indoor Rn data, 1
Enhanced empirical exceedance probability in 
cell B by LN modelling, given n data Z in B:

Z = long-term Rn concentration in 
ground floor dwellings; 
z = 300 Bq/m³, 
B = 10 km × 10 km cells
* … OK modelling
# … classified p< / >0.1

p:=prob(Z>300 Bq/m³); RPA criterion: p>0.1
estimated from cell statistics:

flogi - logistic regression
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bivariate cross-
classification p’ against 
U concentration 
in cells B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2. kind error

1
. 
k

in
d

 e
rr

o
r

Example: European indoor Rn data, 2

ROC curve close to 
diagonal: association 
between p’ and U not 
very strong!
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blue: prob(Z>300)<10% with 1- confidence
orange: >10% with 1- confidence
grey: undecided 
… large areas because of weak association

class limits with 90%C.I. (by bootstrap)

lower: U=1.43 ppm (1.28…1.57)
upper: U=3.27 ppm (3.00...3.73)

lower: U=1.66 ppm (1.50…1.88)
upper: U=2.71 ppm (2.55…2.89)



Methods – 3: parameterization

Models must be parameterized:
Regression models: coefficients estimated from 
data
Cross-classification: rule derived from training 
object

Therefore, parameters are uncertain: 

Predictions are also uncertain. 
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Estimation uncertainty – real data!
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Primary variable: Z= indoor Rn concentration in ground 
floor dwellings, houses with basement; 

Secondary variable: Y= Geogenic Rn potential (GRP). 
Modelled by SGS on U = 10 km × 10 km grid, geology 
as deterministic predictor. 

RPA definition: grid cell U = RPA,  if p:=probU(Z>300 
Bq/m³) > 3 × German average  10%.

p estimated by enhanced empirical exceedance prob., 
assuming LN within cells, GSD=exp(SDU(ln Z))=2:

(unfortunately biased estimator)

Cell U labelled RPA or non-RPA with confidence 90%, 
i.e. 1. and 2. kind error probability <0.1.

RPA: Y>44.5 (12.0% of territory); 
Non-RPA: Y<20.2 (49.8% of territory); 
Yellow: undecided

Proposal for RPAs, Germany, based on 
cross-classification method.



Estimation uncertainty – quantification
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For estimation uncertainty component of model uncertainty: 
Ignore unc. of input variables! 
Only unc. of association Z  Y!

By bootstrap (k=20,000):

reddish hues: RPA: CI90 = (38.2, 52.8)

greenish hues: Non-RPA: CI90 = (13.1, 26.4)
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Distribution somewhat unexpected
Probably because classification is ‘very’ nonlinear transform
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Summary: 
Sources of uncertainty

• Data uncertainty

- Intrinsic: data as observations;

- Data as samples

• Model uncertainty

- Structural uncertainty: choice of model

- Simplification uncertainty

- Parameter estimation uncertainty  



3 Levels of QA
1. Design QA: sampling such that the target (e.g. 

AM of the population in an area) can be met with 
given tolerance 
 sample size, representativeness

2. Data QA: correct measurement!!
Classical metrology QA

3. Evaluation QA:
- select proper method / model 
(easier said than done!)
- consider, as far as feasible (because this can be 

complicated), model-induced uncertainty.

Aspects of 2 and 3 discussed in Metro Radon!



Finally: Why is this so important?

• Whether an area is assigned RPA or non-RPA (or a 
certain level of priorityness) can make a big 
economic difference:
- implementation of building norms
- measurement campaigns
- remediation
- property value

• Also possibly legal consequences, if RPA status is 
legally disputed by stakeholders!

• Administrations and decision makers want to be on 
the safe side – understandably. 
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Conclusions & To-do

RPA – a sensitive subject!
Action required in RPA can be costly  political disputes

• RPA definition and estimation: not only academic exercise, but practically 
important. May have severe economic & political impact. Heavy stakeholder 
interest!
Therefore: QA very important!

• Uncertainty of RPA status (in terms of classification error rate, 1st/2nd kind 
error prob) has many sources of different types!

• Unc(RPA) can be high, in particular for spatial units close to class limits.

• To do: Further explore uncertainty budget of RPA!

• My impression: Unc(RPA) not taken sufficiently seriously!

• Open questions which are a big headache in practice: 
- how to communicate the fact that RPAs are “random objects”?
- how to deal with RPA uncertainty in administrative decision-making?
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Thank you!

This work is supported by the European Metrology Programme for Innovation and Research (EMPIR), 
JRP-Contract 16ENV10 MetroRADON (www.euramet.com). The EMPIR initiative is co-funded by the 
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States.


