Radon Prone Areas characterization and indoor measurements aimed at the health risk assessment in the Eastern sector of Mt. Vulsini volcanic district (northern Latium, Central Italy)

A. Rinaldini¹, G. Ciotoli², L. Ruggiero³, F. Giustini² and G. Buccheri¹

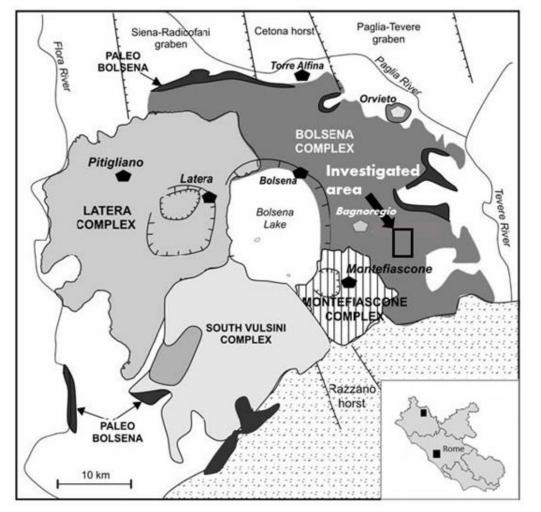
¹ INAIL, National Institute for the Insurance on Work Accidents

² CNR-IGAG, National Council of Researches- Institute of Environmental Geology and Geoengineering

³ University of Rome "La Sapienza"- Earth Science Department

14th INTERNATIONAL WORKSHOP GARRM Geological Aspects of Radon Risk Mapping

18th September 2018, Prague, Czech Republic


Aim of the Study

- Elaborate soil-gas Rn anomaly maps;
- Characterize presence and location of Radon Prone Areas (RPAs);
- Support the "Radon National Plan" art. 103/3 of Euratom Directive 59/2013 Basic Safety Standard;
- Provide local Administrations with thematic maps as a useful tool for land-use planning and to prompt effective strategies in Radon risk assessment;
- Assess an operational protocol of investigation techniques leading to properly analyze collected data.

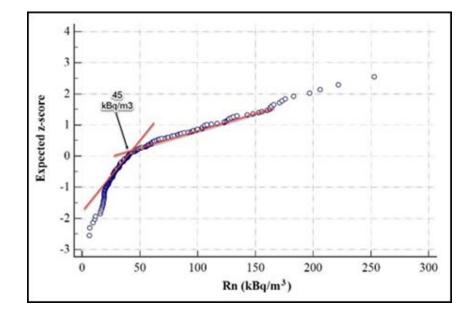
Adopted Work Methodology

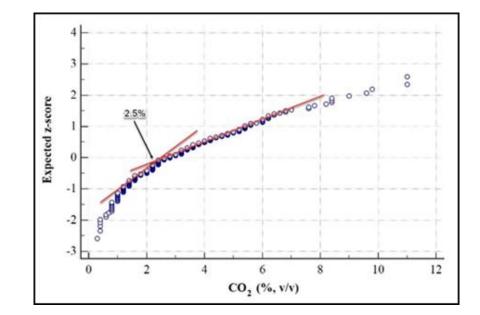
- Preliminary bibliographic studies;
- Radon and CO₂ measurements in soil gases, performed with an AlphaGuard PQ2000Pro[®] Radon monitor and a Draeger X-am[®]7000 multigas device;
- Soil gas data processed with geostatistical methods aimed at the development of georeferred Rn and CO₂ anomalies maps;
- Indoor Radon measurements: both medium-term analyses and short-term investigations;
- Data interpretation.

Geology of the Vulsini Volcanic Complex

- Volcanic and volcano-sedimentary deposits aged between 490K and 127K years ago;
- Explosive activity, tuffs and pyroclastic flows;
- Silt and silty sand of marine environment are also present, covering Pleistocenic pelitic clays, of deep facies;
- Widespread geogenic degassing phenomena, that occur on the surface with several post-volcanic mainfestations, such as thermal springs, travertine deposits and CO_2 -rich endogenic gaseous leakages.

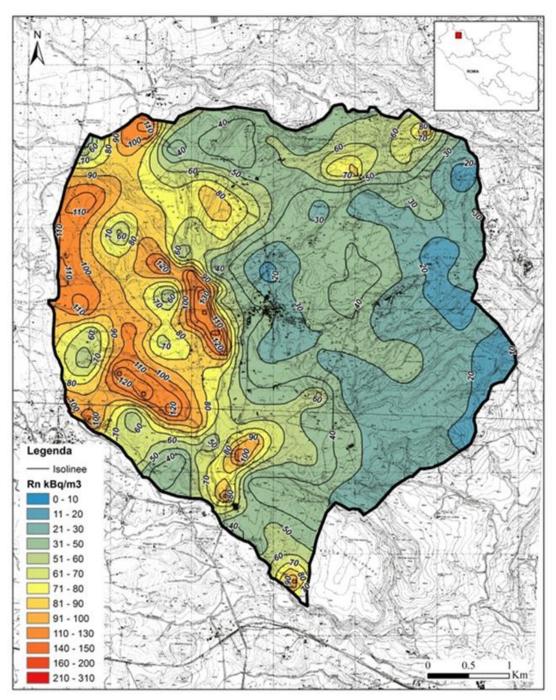
INCIL


Rn and CO₂ soil-gas measurements

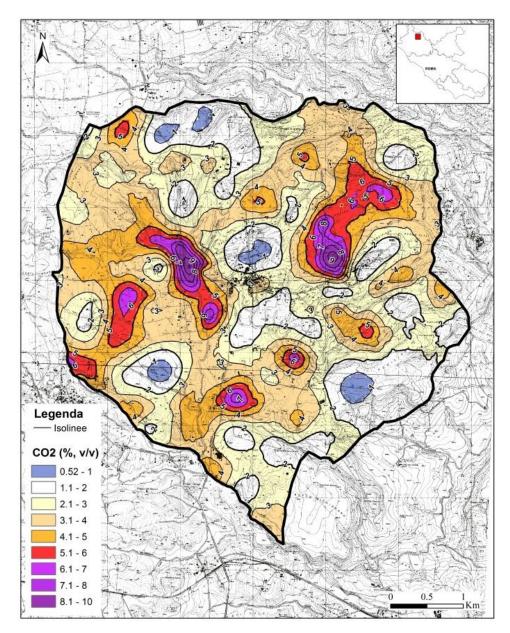

- Stainless steel probe pounded down at about 80 cm depth with a coaxial hammer;
- Radon measurements were performed with an AlphaGuard PQ2000Pro[®] Radon monitor;
- Each Rn measurement lasted 10 minutes;
- Draeger X-am[®]7000 was used for the analysis of soil-gas CO₂ values;
- Rn and CO₂ data collected on an area of about 25 km², acquiring about 200 Rn and CO₂ soil gas samples;

Soil gas samples statistical parameters

	N	Mean	Geom. M.	Median	Min.	Max.	QI (25%)	QS(75%)	Stand. Dev.
Rn (kBq/m ³)	184	60,00	45.14	40.19	6.44	253.60	26.43	80.41	48.75
CO ₂ (%, v/v)	204	3,27	2,68	2,80	0,30	11,00	1,6	4,45	2,17

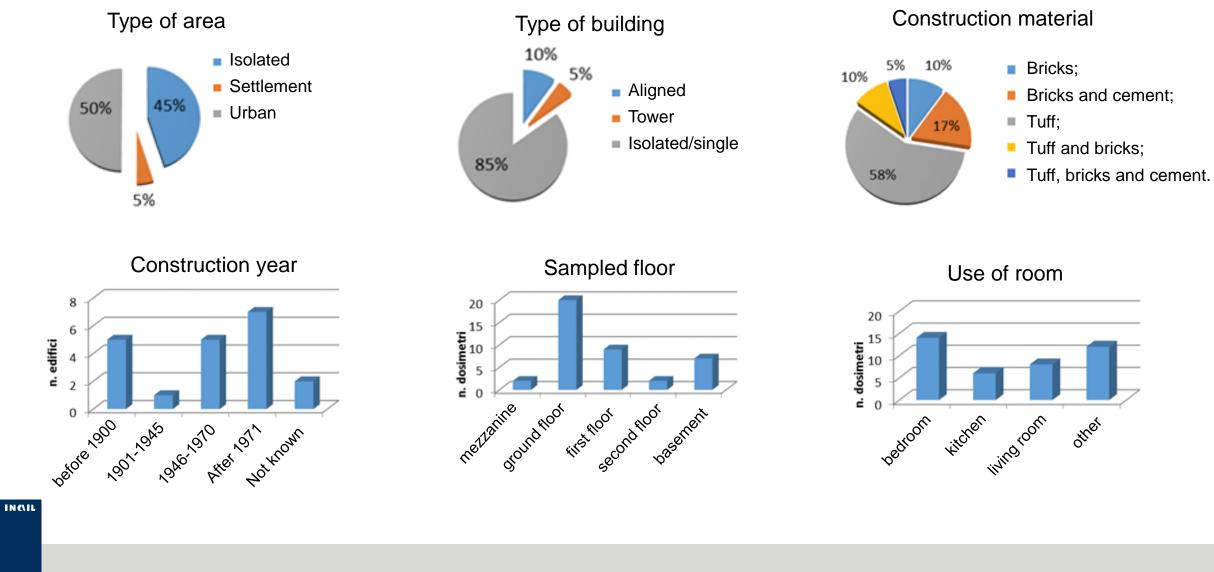


- -Cumulative probability graphs
- -Different populations of data,
- -Anomaly value characterization (Sinclair, 1991)


Rn soil-gas anomalies distribution

- Soil gas samples elaborated with geostatistical methods (kriging algorithm);
- Elaborated georeferred maps run in a GIS environment
- Rn anomalies mainly located in the western sector, with a NW-SE alignment;
- Sharp correlation with: geology, structural features, permeability;
- An usefull tool for Radon Prone Areas (RPAs) characterization

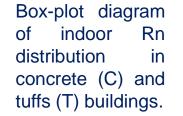
CO₂ soil-gas anomalies distribution


- Both CO₂ and Rn anomalies distributions have similar distribution;
- Majority of outlier samples occur as discrete anomalies along structural lineaments;
- CO₂ is much more abundant than trace elements and migrates quickly on the surface;
- CO₂ act as "carrier gas" for Radon;
- Permeability of faults and tectonic structures provide a vertical pathway for upward gas migration

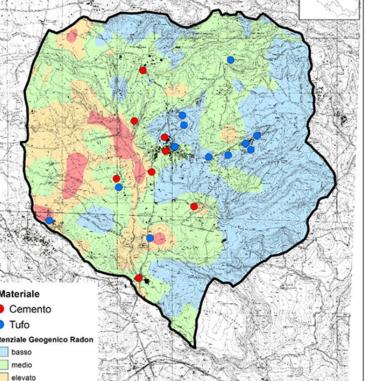
Radon Indoor measurements

- ✓ Measurements were carried out in 20 houses. In each house two dosimeters were placed on different floors;
- ✓ Houses located both in low and high Rn geogenic potential;
- \checkmark Analyses lasted for a medium term period (6 months).
- ✓ Questionary was given to house-owners to keep information on building characteristich and family-life habits;

Buildings characteristics based on Questionaries

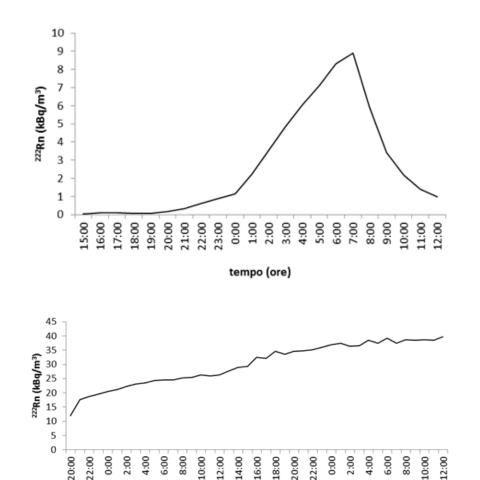


Indoor Radon statistical parameters


	Ν	Mean	Geom. mean	Median	Min.	Max.	QI (25%)	QS(75%)	Dev.Stand.
Rn (Bq/m ³)	40	468	347	302	162	4256	221.8	437.3	648.9

• Indoor radon Italian mean is 77 Bq/m³ (APAT, 2003)

222 Rn (Bq/m³)



INCIL

Short-term indoor Radon measurements

✤ Alphaguard PQ 2000 Pro

Diffusion mode

tempo (ore)

22-hrs sampling carried out into a bedroom placed in the ground floor (July, 2017). Rn in soil gas: 45 kBq/m³

40-hrs sampling carried out into a cellar placed in the basement of a building and dug in tuff formation (July, 2017). Rn in soil gas: 38 kBq/m^3

INCIL

Conclusions

- In the Eastern sector of the Vulsini volcanic complex, Radon Prone Areas (RPAs) are mainly located in the western part of the studied area;
- Rn and CO₂ anomalies show sharp correlation with geological and structural features. Geogenic CO₂ acts as carrier gas for Radon;
- The interpolation and direct correlation of Radon indoor values can not be configured as a effective technique for radon risk mapping;
- Many variables strongly affect indoor Radon values, such as geological characteristics, building construction materials, environmental conditions and life-habits;
- Geostatistical elaboration and mapping of Rn soil-gas data help to fit the issue; yet these do not represent the health risk connected to Radon exposure, but a territorial classification on the <u>probability</u> of identifying high indoor Radon concentrations;
- Rn anomalies maps provide a useful tool for Competent Authorities in territorial planning, and for decisions on which techniques to be undertaken for prevention, mitigation and remedy.

INCIL