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• Soil air permeability is a key driver of Rn entry into houses

• No permeability map available, only proxies

• Challenge: small-scale spatial and temporal variability 
 high uncertainty
 geostatistical analysis is difficult

Motivation

Cinelli et al. 2018
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Soil Air Permeability: Processes and driving forces

Water saturated Air saturated
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• Connection of pore spaces
 Flow paths
• “Sealing” for high soil 

moisture



Soil Air Permeability: data in germany

n=3309
µ = -11.9 m²

Underlying data: elevation model

Location of soil gas measurements
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High nugget effect: 2/3 of sill
Spatial autocorrelation over 50 km 



…

Physical Model
Ghanbarian-Avijeh & Hunt (2012); Water Resources Research

Relative permeability
ɛ - air content

ɛt - minimum air content for percolation
ø - porosity
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Maximum permeability

• Dependence on water/air saturation
• Non-linearity
• Threshold values
• Measurements do not reflect a 

steady-state



Physical Model – relation to hydr. conductivity
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Saturated hydraulic conductivity 2m soil [m/s] 

Observed K vs. hydraulic conducitivity

Sat. permeability ~ Sat. conductivity / (7.5 * 106)

• Poor correlation
• Only positive for slices 1 +2
• Slices 1+2 (top soil) as matching pointsData from: Toth et al. 2017, Hydrol. Process.



Physical Model – relation to hydr. conductivity
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Data derived from Zink et al. (2017); , Hydrol. Earth Sys. Sci.Based on data from Toth et al. (2017), Hydrol. Process., method adapted from Ghanabarian-Avijeh & Hunt (2013), WRR 



…

Physical Model: Results

Assumption: Ka ~ Kw
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Model evaluation:

• Non-existent correlation

• Systematic underestimation

Possible reasons: 

• Proportionality Ka ~ Kw ? Kw as matching point not suitable

 non-linearity

 at low saturation Ka > Kw

• Temporal variability of Ka due to soil moisture fluctuations 
-> soil moisture during sampling correction?

• Effect of macro-pores is not considered

Physical Model: Discussion
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Klinkenberg effect



Machine Learning: 
Multivariate Adaptive Regression Splines (MARS)

General: 
• Well suited for high dimensional problems 
• Allows for continuous and categorical input
• Creates pairs of linear basis functions
• Data-driven algorithm  estimates function

Model Building:
(1) Forward model building: adding basis functions aiming at reducing the training 

error (residual sum of squares - RSS) 
 including many model terms/usually over-fitted

(2) Backward pass: removes model terms aiming at improving generalizability

 Tradeoff between model complexity and generalizability
 Reducing “Generalized cross-validation” criterion  f(RSS, model terms)
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• Geology and soil attributes – BGR Fed. Inst. for Geosc. and Natural Resources
• Categorical data (mostly 1:1.000.000)

• e.g.: Petrography, stratigraphy, generation, Corg content, soil types, hydrogeological units

• Soil hydraulic properties - JRC Toth et al. 2017; Hydrol. Proc.
• Resolution 1 km / 250 m

• 7 depths (0, 5, 15, 30, 60, 100, 200 cm)

• e.g. saturated hydr. conductivity, saturated water content, van Genuchten-Mualem
parameters 

• Topsoil physical properties LUCAS – JRC Ballabio et al. 2016, Geoderma
• 500 m resolution

• Grain size distribution, available water capacity, bulk density

• European Atlas of Natural Radiation – JRC Cinelli et al. 2018, J. Environ. Rad.
• 10 km resolution

• U, Th, K20

• Soil moisture data – UFZ Zink et al. 2017, Hydrol. Earth Sys. Sci.
• Modelling of daily soil moisture in Germany from 1951-2010

• 4 km resolution

• Cell-specific percentiles (dry 10%il, average 50%il, wet 90%il)

Machine Learning: Predictors
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• R-package Earth

• Best single predictors

• All numerical predictors

• Best numerical + Geology

Repeated 5-fold cross-validation

Machine Learning: Model Building

Predictor
Training 

R²

Cross-
validated

R²
Petrography 0.145 0.088
Geology 0.156 0.084

Stratigraphy 0.140 0.084

Hydrogeol. region – sub-section 0.154 0.084

Major soil landscape 0.105 0.083

Uranium content 0.066 0.059

Hydrogeol. region – section 0.078 0.056

Genesis 0.068 0.042

Soil Type 0.072 0.040

Hydr. conductivity 15 cm 0.051 0.040
Sat. water content 10 cm 0.046 0.039
All numerical predictors 0.215 0.115
Best numerical + Geology 0.263 0.150

https://blog.contactsunny.com/data-science/different-types-
of-validations-in-machine-learning-cross-validation
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Machine Learning: K map v0.1
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Machine Learning: Exemplary test maps Rn in soil v0.1
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• Additional predictors: 
• More soil hydraulic properties (at higher resolution?)

• Digital Elevation Model (DEM) derivatives (slope, curvature etc.)

• Geological information at higher resolution (1:250 000)

• Faults

• Possibly correction for effect of soil moisture “anomaly” during sampling

• Systematic procedure for model development predictor selection

• Find “best” model 

• Estimating prediction uncertainty

• Applying other algorithms: 

• Classification and Regression Trees (CART)

• Random Forest (RF)

• Artificial Neural Networks (ANN)

• …

Machine Learning: Next steps
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• Alternative to geostatistics

• Machine learning performs better than physical model

• Focus on machine learning approach

• Results relevant for mapping of GRP / defining radon priority 
areas

• Spatial resolution ≤4 km

• Comparison to geostatistics: better predictions? Less 
uncertainty?

Conclusion/Outlook
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Questions?!
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