Modelling of Soil Air Permeability – Towards a Spatial Continuous Map

Eric Petermann & Peter Bossew

German Federal Office for Radiation Protection, Berlin Section "Radon and NORM"

GARRM Workshop – Prague, 18 September 2018

Bundesamt für Strahlenschutz

Agenda

- 1. Rationale
- 2. Soil air permeability driving forces
- 3. Data
- 4. Physical model
- 5. Machine Learning
- 6. Conclusion

Motivation

- Soil air permeability is a key driver of Rn entry into houses
- No permeability map available, only proxies
- Challenge: small-scale spatial and temporal variability
 - \rightarrow high uncertainty
 - ightarrow geostatistical analysis is difficult

European map of permeability, April 2017

Cinelli et al. 2018

6. Conclusion

Soil Air Permeability: Processes and driving forces

Water saturated

Air saturated

- Connection of pore spaces
- \rightarrow Flow paths

٠

 "Sealing" for high soil moisture

Soil Air Permeability: data in germany

Location of soil gas measurements

Underlying data: elevation model

Physical Model

Ghanbarian-Avijeh & Hunt (2012); Water Resources Research

-0.2

Physical Model – relation to hydr. conductivity

Physical Model – relation to hydr. conductivity

Threshold Air Content for Percolation [cm³/cm³]

Based on data from Toth et al. (2017), Hydrol. Process., method adapted from Ghanabarian-Avijeh & Hunt (2013), WRR

Physical Model: Results

Assumption: $K_a \sim K_w$

Physical Model: Discussion

Model evaluation:

- Non-existent correlation
- Systematic underestimation

Possible reasons:

• Proportionality $K_a \sim K_w$? K_w as matching point not suitable

 \rightarrow non-linearity

 \rightarrow at low saturation $K_a > K_w$

- Temporal variability of K_a due to soil moisture fluctuations
 -> soil moisture during sampling correction?
- Effect of macro-pores is not considered

Machine Learning:

Multivariate Adaptive Regression Splines (MARS)

General:

- Well suited for high dimensional problems
- Allows for continuous and categorical input
- Creates pairs of linear basis functions
- Data-driven algorithm \rightarrow estimates function

Model Building:

- (1) Forward model building: adding basis functions aiming at reducing the training error (residual sum of squares RSS)
- \rightarrow including many model terms/usually over-fitted
- (2) Backward pass: removes model terms aiming at improving generalizability
- ightarrow Tradeoff between model complexity and generalizability
- → Reducing "Generalized cross-validation" criterion f(RSS, model terms)

Machine Learning: Predictors

- Geology and soil attributes BGR Fed. Inst. for Geosc. and Natural Resources ٠
 - Categorical data (mostly 1:1.000.000)
 - e.g.: Petrography, stratigraphy, generation, C_{org} content, soil types, hydrogeological units •
- Soil hydraulic properties JRC Toth et al. 2017; Solved. Proc.
 - Resolution 1 km / 250 m •
 - 7 depths (0, 5, 15, 30, 60, 100, 200 cm) ٠
 - e.g. saturated hydr. conductivity, saturated water parameters
- Total: 62 predictors (so far) Topsoil physical properties LUCAS – JRC Banabio et ...
 - 500 m resolution •
 - Grain size distribution, available water capacity, bulk density ٠
- European Atlas of Natural Radiation JRC *Cinelli et al. 2018, J. Environ. Rad.* •
 - 10 km resolution •
 - U, Th, K_2 O •
- Soil moisture data UFZ Zink et al. 2017, Hydrol. Earth Sys. Sci. ٠
 - Modelling of daily soil moisture in Germany from 1951-2010 ٠
 - 4 km resolution ٠
 - Cell-specific percentiles (dry 10%il, average 50%il, wet 90%il) ٠

Machine Learning: Model Building

- R-package *Earth*
- Best single predictors
- All numerical predictors
- Best numerical + Geology

Repeated 5-fold cross-validation

https://blog.contactsunny.com/data-science/different-typesof-validations-in-machine-learning-cross-validation

		Cross-
Predictor		validated
Petrography	0 1/15	0.088
Geology	0.145	0.084
Stratigraphy	0.140	0.084
Hydrogeol. region – sub-section	0.154	0.084
Major soil landscape	0.105	0.083
Uranium content	0.066	0.059
Hydrogeol. region – section	0.078	0.056
Genesis	0.068	0.042
Soil Type	0.072	0.040
Hydr. conductivity 15 cm	0.051	0.040
Sat. water content 10 cm	0.046	0.039

Machine Learning: K map v0.1

Modelled soil air permeability (2 m thickness) [log10 m²]

Machine Learning: Exemplary test maps Rn in soil v0.1

Machine Learning: Next steps

- Additional predictors:
 - More soil hydraulic properties (at higher resolution?)
 - Digital Elevation Model (DEM) derivatives (slope, curvature etc.)
 - Geological information at higher resolution (1:250 000)
 - Faults
- Possibly correction for effect of soil moisture "anomaly" during sampling
- Systematic procedure for model development predictor selection
- Find "best" model
- Estimating prediction uncertainty
- Applying other algorithms:
 - Classification and Regression Trees (CART)
 - Random Forest (RF)
 - Artificial Neural Networks (ANN)
 - ...

Conclusion/Outlook

- Alternative to geostatistics
- Machine learning performs better than physical model
- Focus on machine learning approach
- Results relevant for mapping of GRP / defining radon priority areas
- Spatial resolution ≤4 km
- Comparison to geostatistics: better predictions? Less uncertainty?

Questions?!