Radon in Soil Gas Measurements by RAD7 Active Device and Its Possible Correlation with Soil Grain Size and Composition

Sofija Forkapić¹, Robert Lakatoš², Selena Samardžić², Peter Jovanovič³, Kristina Bikit-Schroeder¹, Dušan Mrđa¹

¹Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, Serbia ²Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad, Serbia

³Zavod za varstvo pri delu, Chengdujska cesta 25, Ljubljana, Slovenia

Soil is the most important factor affecting the radon level in the human living environments. It depends not only on uranium and radium contents but also on the physical and chemical properties of the soil.

In <mark>th</mark>is paper, the measurements of radon concentrations in soil gas determined by active radon monitor RAD7 in Vojvodina region, Northern Province of Serbia, are presented.

²²⁶Ra and ²³⁸U activity concentrations in soil samples were measured by gamma ray spectrometry, while the grain size of soil samples has been determined by Malvern Mastersizer 2000 laser diffraction particle size analyzer.

Soil gas radon concentration ranges between 5 and 46 kBq/m³ indicating a low natural radiation area. The results of radionuclide content in soils were found to vary from 17,6 Bq/kg to 39,4 Bq/kg for radium and from 15 Bq/kg to 51 Bq/kg for uranium, respectively.

As a result of standard regression analysis between the measured values, model that includes soil grain composition, radium and uranium content as predictors with 63.7% affects the radon concentration in soil.

IAEA TRS 474: *Measurement and Calculation of Radon Releases from NORM Residues*, Y. Ishimori, K. Lange, P. Martin, Y.S. Mayya, M.Phaneuf, Vienna 2013

- (a) Emanation radon atoms formed from the decay of radium escape from the grains (mainly because of recoil) into the interstitial space between the grains.
- (b) Transport diffusion and advective flow cause the movement of the emanated radon atoms through the residue or soil profile to the ground surface.

(c) Exhalation— radon atoms that have been transported to the ground surface and then exhaled to the atmosphere.

Factors affecting radon emanation

- Radium distribution, particle size and shape
- Moisture content
- Mineralogical aspects such as lattice structure, porosity, grain shape, and elemental composition

IAEA TRS 474: *Measurement and Calculation of Radon Releases from NORM Residues*, Y. Ishimori, K. Lange, P. Martin, Y.S. Mayya, M.Phaneuf, Vienna 2013

soil probe method for the measurement of radon concentration at different depths using a continuous radon monitor

Soil gas radon activity concentrations were measured in situ by RAD7 alpha-spectrometer (DURRIDGE Company) with stainless soil gas probe using grab protocol. While pumping, the air flow rate is about 0.7 l/min and therefore 3.5 l of soil gas is extracted from the soil at the depth of 80 cm [8]. The ability to count only the ²¹⁸Po decays in sniff mode means that the measurements are unaffected by other particles [9]

$$C(z) = C_{\infty} \left(1 - \exp\left(-\frac{z}{L_r}\right) \right)$$

where

- C_{∞} is the radon concentration at great depth (Bq/m³);
- z is the thickness of the material (m);

and L_r is the radon diffusion length (m).

The intercomparison of continuous radon active monitors RAD7

Image: Description of the second s

Zavod za varstvo pri delu – ZVD, Slovenia

Laboratory for radioactivity and dose measurements – PMF NS, Serbia.

Let was focused on investigation of consistency results of laboratories respect to same samples in real measurement conditions.

grab protocol with sniff mode at the field near ZVD at two sites **loc**ated at the distance of 78 cm from each other .

The stainless soil gas probes were inserted in soil to the depth of 80 cm

The last calibration of used devices was performed in radon chamber at the accredited trial metrological Lab. SUJCHBO Kamenna, Czech Republic in 2015. Calibration laboratory is traceable to PTB Braunschweig, Germany.

Soil gas measurements intercomparison results

Soil	, site 1 – lab.cod	leı	So	il, site 2 — lab.cod	le 1	
	Radon in soil	2σ Uncert.		Radon in soil	2σ Uncert.	
Mode	[Bq/m ³]	[Bq/m ³]	Mode	[Bq/m³]	[Bq/m ³]	
Sniff	31600	2300	Sniff	26400	2100	
Sniff	35600	2500	Sniff	29000	2200	
Sniff	39000	2600	Sniff	30500	2300	
Sniff	45000	5300	Sniff	32400	2400	
Reported value	45000	5300	Reported value	32400	2400	
Soil	, site 1 – lab.cod	le 2	Soil, site 2 – lab.code 2			
	Radon in soil	2σ Uncert.		Radon in soil	2σ Uncert.	
Mode	[Bq/m³]	[Bq/m³]	Mode	[Bq/m ³]	[Bq/m³]	
Sniff	41236	3292	Sniff	30899	2787	
Sniff	44382	3674	Sniff	32584	3056	
Sniff	43708	3674	Sniff	32135	3090	
Sniff	42584	3685	Sniff	33596	3180	
Reported value	44382	3674	Reported value	33596	3180	
Bias %	1.4	4 %	Bias %	4	%	

The study was conducted in urban settlements on 14 locations with high and moderate level of indoor radon. Criterion for measurement points selection was also to cover all geomorphological units in Vojvodina region [6]: two mountains, four loess plateaus, three loess terraces, four alluvial plains and two sandstone terrains.

For results evaluation SPSS (Statistical Package for the Social Sciences) statistics were used to see whether there is a correlation between measured activities. In order to predict the radon concentrations in soil, standard regression analysis was performed with ²³⁸U, ²²⁶Ra, and the soil grain size and soil composition as predictors.

The connection between radium and uranium content in soil and radon emanation in soil might be used in modeling the radon risk.

The radon risk classification in many countries in Europe is based on the soil gas radon measurements and permeability determination according to geogenic radon potential concept [7]. The main advantage of this concept is given by the fact that the radon risk is independent on human influence and temporally constant over a geological timescale.

Geomorphologic units and locations of sampling

50km

September 18th – 20th(21st), 2018 Prague, Czech Republic

14th INTERNATIONAL WORKSHOP GARRM (on the GEOLOGICAL ASPECTS OF RADON RISK MAPPING)

Horgoš sands (1), Bačka loess plateau (2), Alluvial plain (3), Bačka loess terrace (4), Banat loess terrace (5), Tamiš loess plateau (6), Deliblato loess plateau (7), Vršac mountains (8), Deliblato sands(9), Fruška Gora mountain (10), Fruška Gora loess plateau (11) and Srem loess terrace (12

Gamma spectrometry measurements of soil

On each measurement point soil sample was taken from the surface layer (5–30 cm) and after drying and homogenization packed in cylindrical geometry 62 mm x 67 mm. Typical mass of samples was 200-300 g and measurement time was 80 ks. Activity concentrations of radionuclides in soil were determined by low-level gamma spectrometry method on shielded HPGe detectors with maximal background reduction.

The gamma spectra were acquired and analyzed using the Canberra Genie 2000 software. A special procedure developed in the Novi Sad laboratory was used for the determination of the ²³⁸U activity concentration from gamma-lines of the first progeny of this radionuclide, ²³⁴Th. MDA according to time of measurements for each radionuclide:

9 Bq/kg za ²³⁸U, 2.5 Bq/kg za ²²⁶Ra, 1.3 Bq/kg za ²³²Th, 13.3 Bq/kg za ⁴⁰K i 1.2 Bq/kg za ¹³⁷Cs.

Particle size distribution

Volume distribution of soil grain sizes was determined by laser diffraction dry method with particle size analyzer Mastersizer 2000, Malvern Instruments at the Faculty of Technical Sciences, Novi Sad

A particle size distribution analysis was conducted using a Malvern Mastersizer 2000 Particle Size Analyzer capable of analyzing particles between 0.02 μ m and 2000 μ m. The Malvern Mastersizer 2000 records the light pattern scattered from a field of particles at different angles. The result of the analysis is the relative distribution of the volume or surface of spherically shaped particles in a range of size classes. Based on particle size analysis the following fractions were determined: coarse sand (500-2000 μ m), medium sand (250-500 μ m), fine sand (62.5-250 μ m), silit (3.9-62.5 μ m), and clay (<3.9 μ m).

Laser diffraction is a widely used particle sizing technique for materials ranging from hundreds of nanometers up to several millimeters in size

Laser diffraction measures particle size distributions by measuring the angular variation in intensity of light scattered as a laser beam passes through a dispersed particulate sample.

Figure 1. Particle size distribution moved to bigger particles

Figure 2. Particle size distribution moved to smaller particles

Volume weighted mean and surface weighted mean

14th INTERNATIONAL WORKSHOP GARRM (on the GEOLOGICAL ASPECTS OF RADON RISK MAPPING) September 18th – 20th(21st), 2018 Prague, Czech Republic Indoor radon gas concentrations, maximum ambient dose equivalent in contact to walls and floor

Location	CR39	Charcoal canisters	RAD7 2228n	H*(10) [uSv/h]	H*(10) [uSv/h]	BM	BM floor
code	[Bq/m ³]	[Bq/m ³]	[Bq/m ³]	walls	floor	walls	
SM1	188	46.2(2.1)	135	0.215	0.182	brick block	concrete
SM2	627	380(6)	75	0.221	0.201	brick	concrete
SM3	338	128(3)	133	0.257	0.225	brick, adobe	wood and soil
BP1	667	334(11)	109	-	-	brick	concrete
К2	481	144(6)	42	-	-	concrete. brick	concrete
P1	370	173(10)	140	0.154	0.139	brick, adobe	wood and soil
SAJ1	-	26(4)	16.5	0.233	0.209	brick and brick block	concrete
BE1	96	79(6)	36.2	0.197	0.251	brick, thermo insulation	concrete
DM1	126	110(7)	116	0.167	0.191	brick	concrete
TM1	-	90(6)	39.5	0.143	0.125	brick	concrete
KI1	28	54(6)	36.3	0.161	0.143	brick, concrete, brick block	concrete
KI2	-	161(7)	238	0.185	0.205	brick, brick block	wood and soil
SU7	315	262(9)	99	0.205	0.191	concrete, brick	concrete
SU8	455	270(9)	384	0.173	0.143	brick.5	concrete
RAD1	820	930(20)	638	0.167	0.175	stone. brick	stone
VR1	605	664(20)	524	0.155	0.173	Brick, brick block	concrete

Gamma spectrometry analysis of soil and radon in soil gas

Location	²³⁸ U	²²⁶ Ra	²³² Th	⁴⁰ K	¹³⁷ Cs	²²² Rn in soil
code	[Bq/kg]	[Bq/kg]	[Bq/kg]	[Bq/kg]	[Bq/kg]	[Bq/m³]
SM1	28.9±1.4	29.8±1.4	44±3	515±28	6±0.7	32247(2787)
SM2	31±12	33±5	47.2±2.9	558±22	6.5±0.6	25056(2506)
SM3	39.3±1.9	39.4±1.9	46±10	530±30	9.2±1.1	34831(3034)
BP1	25±11	37±6	53±3	564±22	6±0.6	46292(3483)
К2	24±8	30.0±2.5	41.3±2.1	511±28	2±0.6	12809(1753)
P1	34±7	28.8±1.9	35±6	469±16	9.2±0.7	10528(1573)
SAJ1	51±13	33±3	34±6	540±30	3.1±1.1	4977(1213)
BE1	26±21	24.2±1.4	34±8	435±27	6.1±0.9	8989(1506)
DM1	15±8	23.0±2.2	28.8±2.6	454±25	4.4±0.6	21685(2270)
TM1	37±5	26.3±1.7	31.5±2.0	430±40	5.5±0.6	5888(1202)
KI1	17.5±2	17.6±1.4	27.4±2.0	499±26	1.9±0.3	8843(1472)
KI2	37±5	26.3±1.7	31.5±2.0	430±40	5.5±0.6	8820(1461)
SU7	28±9	33.8±2	32±10	463±23	3.3±0.6	12584(1730)
SU8	34±8	38±4	45±10	574±19	4.4±0.5	1103(561)
RAD1	36±5	22.7±0.8	31.2±2.3	530±80	45.7±1.7	30562(2764)
VR1	55±6	30.1±0.9	39±3	560±50	14.2±0.8	

Mechanical content and grain size of soil

Location code	Clay <3.9 μm [%]	Silit 3.9-62.5 μm [%]	Fine sand 62.5-250 μm [%]	Medium sand 250-500 μm [%]	Coarse sand 500-2000 μm [%]
SM1	4.18	37.75	25.14	17.24	15.75
SM2	6.62	38.99	16.63	11.45	26.27
SM3	7.41	38.58	18.47	16.92	18.61
BP1	9.03	50.46	16.08	10.41	14.02
K2	6.82	38.53	15.89	5.36	33.39
P1	3.75	38.31	26.50	19.61	11.83
SAJ1	7.22	43.92	24.52	11.67	12.73
BE1	4.89	35.39	26.35	13.51	19.86
DM1	4.40	25.08	49.21	4.90	16.41
TM1	4.52	38.29	44.52	7.45	5.22
KI1	5.92	29.35	27.93	29.21	7.56
KI2	5.96	32.48	14.14	9.13	38.28
SU7	8.67	57.58	13.54	4.49	15.72
SU8	8.13	56.49	17.19	7.24	10.95
RAD1	7.68	27.46	35.87	22.63	6.36
VR1	5.43	33.31	37.31	20.49	3.46

Location code

Soil gas radon concentrations arranged in ascending order of clay component content of soil samples (x-axis)

	14 th INTE	RNATIONAL WORK	(or	the GEOLOGIC	AL ASPECTS OF RAI	DON RISK MAPPING)
Location code	Surface Weighted Mean [um]	Vol. Weighted Mean [µm]	238U [Bq/kg]	²²⁶ Ra [Bq/kg]	²²² Rn in soil [Bq/m ³]	ive, Czech Republic
SM1	23.367	281.480	28.9±1.4	29.8±1.4	32247(2787)	
SM2	17.148	355.711	31±12	33±5	25056(2506)	
SM3	15.900	282.726	39.3±1.9	39.4±1.9	34831(3034)	
BP1	12.502	217.508	25±11	37±6	46292(3483)	
К2	16.890	431.599	24±8	30.0±2.5	12809(1753)	
P1	24.882	234.298	34±7	28.8±1.9	10528(1573)	
SAJ1	15.627	221.245	51±13	33±3	4977(1213)	
BE1	21.426	321.311	26±21	24.2±1.4	8989(1506)	
DM1	25.761	274.794	15±8	23.0±2.2	21685(2270)	
TM1	21.801	153.585	37±5	26.3±1.7	5888(1202)	
KI1	20.347	219.475	17.5±2	17.6±1.4	8843(1472)	
KI2	19.674	484.266	37±5	26.3±1.7	8820(1461)	
SU7	12.469	224.978	28±9	33.8±2	12584(1730)	
SU8	13.135	183.311	34±8	38±4	1103(561)	
RAD1	16.834	206.388	36±5	22.7±0.8	30562(2764)	
VR1	20.380	170.247	55±6	30.1±0.9		

Statistical analysis

From linear correlation analysis between all measured parameters and radon in soil concentrations the Pearson correlation coefficient was calculated with two-tailed statistical significance of 0.05. It was only found statistically significant correlation between ²²⁶Ra content and radon in soil concentrations

For regression analysis two groups of predictors must be considered because soil types and surface and volume weighted mean particle size are significant correlated which strongly affect regression model. The first model with ²²⁶Ra, ²³⁸U, fine sand, medium sand, silit and clay as predictors can be explained by 63.7% (adjusted R square =0.637, p<0.05).

	Model Summary										
					Change Statistics						
			Adjusted R	Std. Error of	R Square						
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Sig. F Change		
1	.905 ^a	.818	.637	7833.932	.818	4.507	6	6	.045		

a. Predictors: (Constant), finesand, mediumsand, zemlja uranijum, silit, zemlja radijum, clay

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1659555156	6	276592526.1	4.507	.045 ^b
	Residual	368222956.3	6	61370492.72		
	Total	2027778113	12			

a. Dependent Variable: zemlja radon

 b. Predictors: (Constant), finesand, mediumsand, zemlja uranijum, silit, zemlja radijum, clay

The second one with ²²⁶Ra, ²³⁸U and surface weighted mean of soil particle sizes predicts radon in soil concentrations with probability of 61.4% (adjusted R square =0.614, p<0.05).

	Model Summary												
					Change Statistics								
			Adjusted R	Std. Error of	R Square								
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Sig. F Change				
1	.843 ^a	.711	.614	8073.174	.711	7.371	3	9	.009				

a. Predictors: (Constant), surfaceweigth, zemlja uranijum, zemlja radijum

1		\mathbf{n}			а
	Ν	υ	v	н	

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1441192836	3	480397611.9	7.371	.009 ^b
	Residual	586585277.0	9	65176141.89		
	Total	2027778113	12			

a. Dependent Variable: zemlja radon

b. Predictors: (Constant), surfaceweigth, zemlja uranijum, zemlja radijum

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confiden	ice Interval for B	c	orrelations	
Mo	odel	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part
1	(Constant)	-44350.988	27136.583		-1.634	.137	-105738.204	17036.228			
	zemlja uranijum	-926.396	281.344	684	-3.293	.009	-1562.841	-289.952	206	739	590
	zemlja radijum	2460.932	594.484	1.134	4.140	.003	1116.115	3805.748	.581	.810	.742
	surfaceweigth	945.406	733.307	.318	1.289	.229	-713.450	2604.262	279	.395	.231

Coefficients^a

a. Dependent Variable: zemlja radon

Instead of conclusions

Obtained results of RAD7 intercomparison measurement showed good agreement confirming suitability of this radon active monitor for repeatable and sustainable detection of radon in soil gas.

Correlation of radon in soil gas concentrations and finest soil component (clay) that correspond to permeability of soil shows that other parameters, such as porosity, influence the emanation processes for grain aggregates. This fact becomes relevant for measurements in situ, where grains are present in aggregates [11].

Lt was found statistically significant correlation between ²²⁶Ra content in soil and radon in soil gas concentrations. As a result of standard regression analysis between the measured values, model that includes soil grain composition, radium and uranium content as predictors with 63.7% affects the radon concentration in soil.

