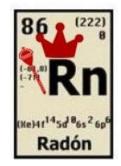
Using radon as tracer of an old NAPL contamination in groundwater (Roma, Italy)

Alessandra Briganti¹, Mario Voltaggio², Michele Soligo¹, Paola Tuccimei¹, Claudio Carusi³, Carlo Lucchetti^{1,4}, Mauro Castelluccio^{1,4}

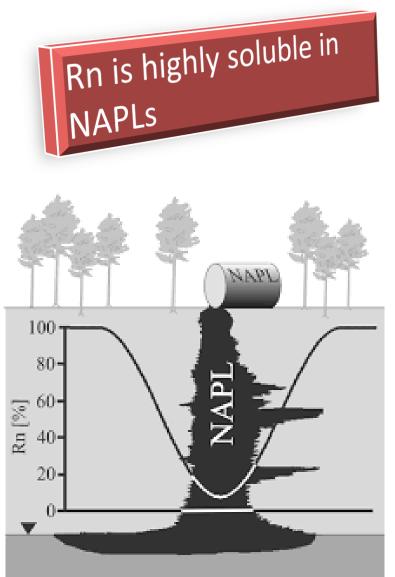
¹ Università "Roma Tre", Dipartimento di Scienze, Roma, Italy ² CNR-IGAG, Montelibretti (Roma), Italy

³ Mares S.r.l., Protezione Ambiente, Roma, Italy,

⁴ Università "La Sapienza", Dipartimento di Scienze della Terra, Roma, Italy



14th INTERNATIONAL WORKSHOP GARRM - September 2018, Prague, Czech Republic


MARES

A Good Environmental Tracer

Modified by https://www.pinterest.it/pin/346917977517059818/

- Widely present in natural environments
- Inert gas
- Easy to measure in lab and on field

Radon as tracer for NAPL contamination of groundwater and soils

BEFORE REMEDIATION DURING/AFTER REMEDIATION

Localization of a NAPL plume

Determination of residual NAPL

from Schubert et al. (2002)

Quantification of residual NAPL

Eur. Phys. J. Special Topics 224, 717–730 (2015) © EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02402-3 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS

Review

Using radon as environmental tracer for the assessment of subsurface Non-Aqueous Phase Liquid (NAPL) contamination – A review

M. Schubert^a

UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany

NAPL quantity is expressed as saturation!

Estimation of Residual NAPL

$$S_{NAPL} = (1 - \Delta C_{\infty}) / [(\Delta C_{\infty} \cdot K_{NAPL/W}) - \Delta C_{\infty}] \qquad \text{Schubert (2015)}$$

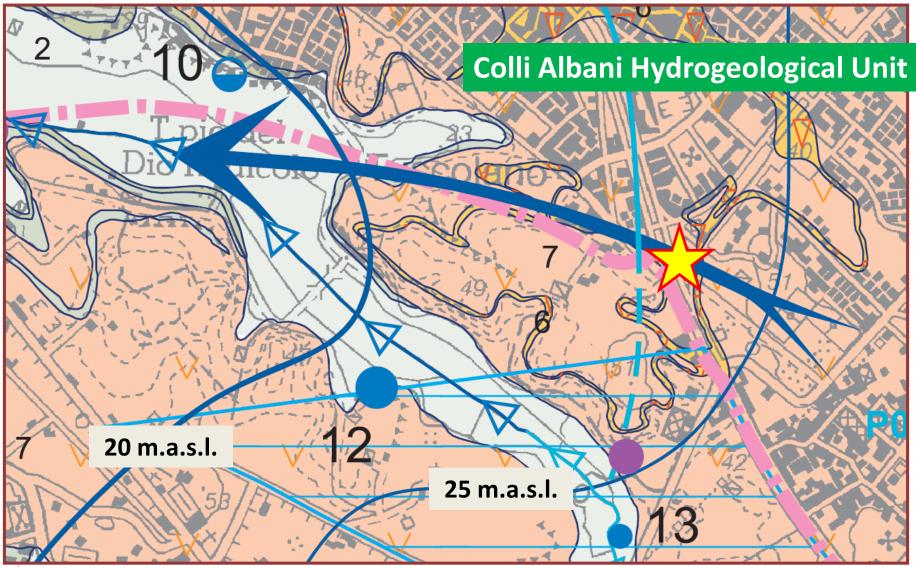
where:

 S_{NAPL} is NAPL saturation (dimensionless);

 ΔC_{∞} is a dimensionless radon deficit factor;

 $K_{NAPL/W}$ is radon partition coefficient between NAPL and groundwater (dimensionless).

(Ra₂₂₈/Th₂₂₈ method, *Briganti et al.*)


Wells Sampled contamined wells

Sampled unpolluted wells

Direction of groundwater flow

The studied area is a dismissed fueling station in Rome.

Hydrogeological Map of the Area

Dismissed fueling station

(La Vigna et al., 2016)

List of Field and Lab Activities

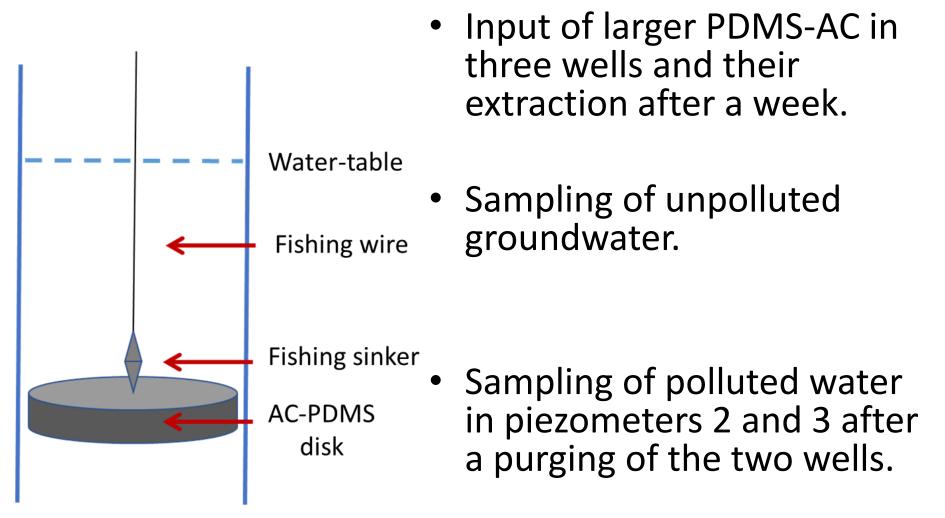
Date	Activity	Piezometer	Analyses
May 25th 2018	Groundwater sampling	1	Rn by RAD7
May 25th 2018	Oil-socks sampling	1	Rn by gamma-spec
May 25th 2018	Input of PDMS-AC disk	1	-
June 4th 2018	Collection of PDMS-AC disk	1	Rn by gamma-spec
June 4th 2018	Input of 3 larger PDMS-AC disks	1, 2, 3	-
June 4th 2018	Groundwater sampling	12	Rn by RAD7
June 11th 2018	Collection of 3 PDMS-AC disks	1, 2, 3	Rn by gamma-spec
July 2th 2018	Sampling groundwater with purging of piezometer	2, 3	Rn by RAD7

Field (part1)

- Water table level –10.28 m below ground level.
- Sampled 1 liter of water.

Field (part1)

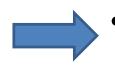
- Sampling of 1000g of «Oil Sock»
- Input of PDMS-AC disk and its extraction after a week.



List of Field and Lab Activities

Date	Activity	Piezometer	Analyses
May 25th 2018	Groundwater sampling	1	Rn by RAD7
May 25th 2018	Oil-socks sampling	1	Rn by gamma-spec
May 25th 2018	Input of PDMS-AC disk	1	-
June 4th 2018	Collection of PDMS-AC disk	1	Rn by gamma-spec
June 4th 2018	Input of 3 larger PDMS-AC disks	1, 2, 3	-
June 4th 2018	Groundwater sampling	12	Rn by RAD7
June 11th 2018	Collection of 3 PDMS-AC disks	1, 2, 3	Rn by gamma-spec
July 2th 2018	Sampling groundwater with purging of piezometer	2, 3	Rn by RAD7

Field (part 2 and 3)



Lab Activities

Rn content was measured by:

- RAD7+RADH2O
 accessory
 water samples
- High resolution (HGeD) gamma-spectrometry

 Rn adsorbed onto the passive accumulators

Results (field data-no purging)

Measured

- Rn content in uncontaminated water 24 Bq/L (*pz12*)
- Rn content in contaminated water from 0.4 to 7 Bq/L (*pz1,2,3 passive Rn accumulators*)

Calculated

- K_{NAPL/W} ≈ 7.22 (ratio between Rn concentration (pz1)in water and oil sock)
- Radon Deficit estimated is from 0.016 to 0.292 (ratio between uncontaminated and polluted water)

All data collected by intercalibration between by RAD7 and passive accumulators!

Estimation of Residual NAPL

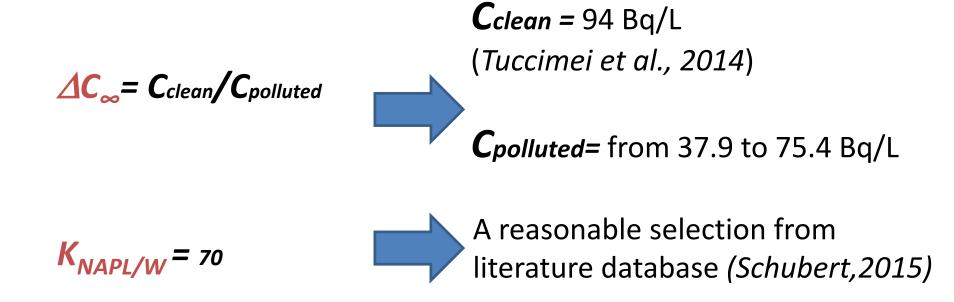
 $S_{NAPL} = (1 - \Delta C_{\infty}) / [(\Delta C_{\infty} \cdot K_{NAPL/W}) - \Delta C_{\infty}] \qquad \text{Schubert (2015)}$

The comparison between our field data and the chemical analyses performed on contaminated water shows that the NAPL saturation of the soil was

NOT REPRESENTATIVE

Results (field data)

Problems regarding collected dat


The value of Rn concentration (**AC**, realistic without the well purging.

Oils drops in the water samples (properties of $K_{NAPL/W}$.

Results (field data-with purging)

 $S_{NAPL} = (1 - \Delta C_{\infty}) / [(\Delta C_{\infty} \cdot K_{NAPL/W}) - \Delta C_{\infty}]$

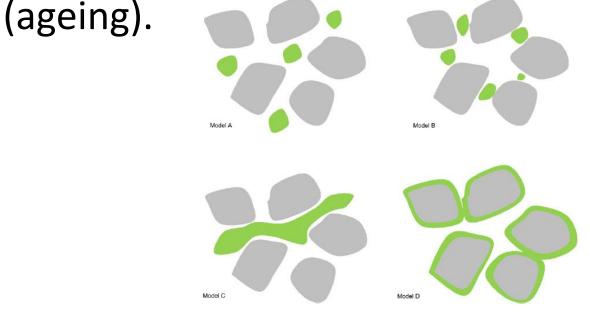
The new estimated value of NAPL saturation: **0.0036 - 0.02**

CONCLUSIONS

 Passive accumulators are useful, but they have to be inserted in the well after purging and the contact span of time has to be reduced.

• Radon Deficit Technique is applicable to assess S_{NAPL} , considering the used values of ΔC_{∞} and $K_{NAPL/W}$ critically.

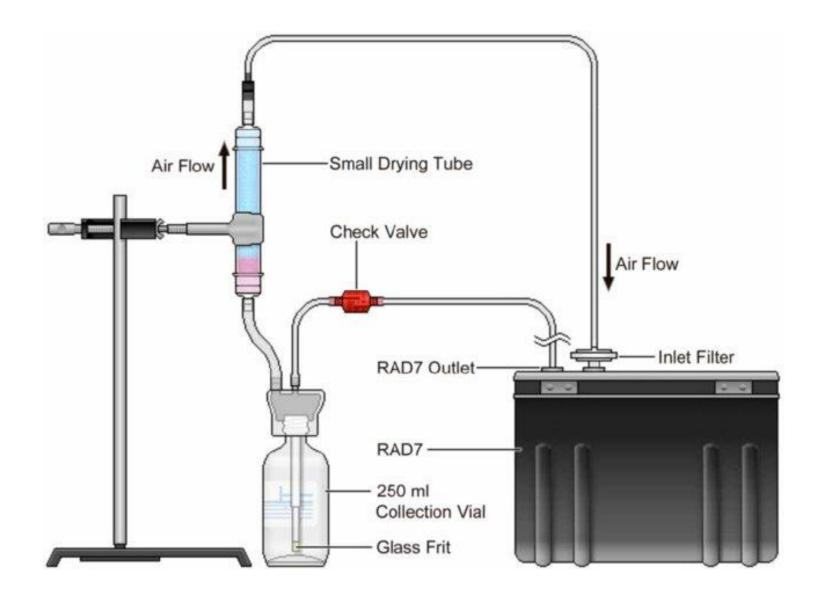
Further developments


Further investigations on the site to assess the extension of contamination.

 Quantifying the residual NAPL in terms of NAPL weight or volume and not only as soil saturation.

Further developments

 Understanding the effect on *Rn defict* and *residual NAPL quantification* of the changing NAPL distribution in soil due to degradation



S. Johansson et al. / Journal of Applied Geophysics 123 (2015) 295–309

KeepCalmAndPosters.com

Special thanks to *Mares Italia S.r.l.* for the access to the site and for collaboration

https://www.researchgate.net/publication/292178290_Application_of_Rn-

222_isotope_for_the_interaction_between_surface_water_and_groundwater_in_the_Source_Area_of_the_Yellow_River/figures?lo=1