14th International Workshop on the Geological Aspects of Radon Risk Mapping- GARRM Prague

Response time of radon monitors under controlled conditions

<u>Daniel Rabago</u>¹, Marta Fuente², Sixto Herrera¹, Luis Quindos¹, Ismael Fuente¹, Mark Foley², Carlos Sainz¹

> ¹University of Cantabria, Spain ²National University of Ireland Galway, Ireland

September 2018

Introduction

- Most studies include radon measurements to classify the radon risk areas, to evaluate dwellings, etc.
- Passive detectors are commonly used to carry out long-term measurements:
 - Time-integrated concentration
- Active detectors are frequently used in Rn diagnostic measurement:
 - Continuous monitoring
- It is important to ensure radon measurements quality and maintain traceability to calibration standards.

To benchmark several different radon monitors:

(1) To quantify accuracy during a period of stable radon concentration

(2) To study response time during increase and decrease periods

Radon Chamber: Laboratory of Environmental Radioactivity, University of Cantabria (Spain)

- Stainless steel radon chamber
- Thickness of 3.25 mm
- Internal volume 1 m³
- Top face is a lid that can be removed
- 3 circular holes to insert etched track detectors
- Radon sources: from 30 to 1100 Bq h^{-1}
- Air exchange with exterior controlled with a pump

Experimental design:

- Radon source inside the chamber
- Sealed with acrylic putty
- Air exchange with exterior/leakages: controlled with the pump
- Radon concentration in the chamber is monitored with a reference monitor traceable to international standards

Radon detectors:

- AlphaGUARD [Saphymo Bertin Technologies SAS] (Reference)
- Atmos12 [Gammadata instruments AB]
- Radon Scout [Sarad GmbH]
- Tera [Tesla]
- Radon Scout Home [Sarad GmbH]
- Wave [Airthings]
- **Canary** [Airthings]
- Etched track detector (CR-39) [Radosys]

Experimental design:

• Theoretical approach:

$$C(t) = C_0 e^{-\lambda t} + \frac{\phi}{V\lambda} (1 - e^{-\lambda t})$$

 λ_e

 C_0 (Bq/m³): initial radon concentration ϕ (Bq/h): radon emission rate from source $\lambda = \lambda_{Rn} + \lambda_e$

F : pump flow rate*V* : Rn chamber volume

Experimental design:

Radon Source : $\phi = (162 \pm 5)$ Bq/hPump flow:F = 0.5 L/min $\lambda = \lambda_{Rn} + \lambda_e = 0.0367$ h⁻¹

Radon Source : $\phi = (162 \pm 5)$ Bq/h Pump flow: F = 1 L/min $\lambda = \lambda_{Rn} + \lambda_e = 0.0676$ h⁻¹

- Chamber lid opened
- Source removed
- High ventilation rate

Accuracy analysis:

- To examine the radon concentration stable period
- To compare mean values obtained for each device with the reference monitor
- To obtain the deviation from the reference
- Mean value and Standard deviation

Response time analysis:

Method 1:

- Analysis of the time that it takes for each monitor to reach a percentage of the final reference radon concentration in a given time interval.
- Key percentages proposed are 10%, 50% and 90%.

Response time analysis:

Method 1:

- Analysis of the time that it takes for each monitor to reach a percentage of the final reference radon concentration in a given time interval.
- Key percentages proposed are 10%, 50% and 90%.

Response time analysis:

Method 2:

Analysis of the radon concentration relative error (RE) from the AlphaGUARD reference, obtained for each monitor as:

$$RE = \frac{(C_i[monitor] - C_i[reference])}{C_i[reference]}$$

 C_i is the radon concentration measured by each device at time *i*.

Response time is defined as the time that it takes for each detector to reach a relative error within $\pm 10\%$

Accuracy analysis: Comparison of mean values during the stable period with the reference monitor

	Mean (Bq/m3)	SD (Bq/m3)	δ (%)
AlphaGUARD	2453	68	-
Atmos12	2443	55	-0,4
Radon Scout	2519	154	2,7
Tera	2431	151	-0,9
Radon Scout Home	2732	439	11,3
Wave	2516	152	2,5
Canary	2306	461	-6,0
CR-39	2630	200	7,2

- δ : relative percentage difference (%)
- Error bars: Standard deviation
- Most devices mean value within 10%
- Dependence with slope

Response time analysis (Method 1): Time to reach the percentage of the final reference concentration

	time (hours) Increasing Period					
	10%	Ratio	50%	Ratio	90%	Ratio
AlphaGUARD	1,7	1,0	8,5	1,0	21,5	1,0
Atmos12	2,2	0,8	9,2	0,9	22	1,0
Radon Scout	2,7	0,6	10,3	0,8	22	1,0
Tera	2	0,9	8,5	1,0	23	0,9
Radon Scout Home	4,4	0,4	10,8	0,8	21	1,0
Wave	9,3	0,2	24	0,4	>24	-
Canary	4,4	0,4	21	0,4	>24	-

- As Rn concentration is increasing, monitors try to reach the reference evolution
- Ratio (Ref/Monitor) increases with time
- Dependence with slope

Response time analysis (Method 1): Time to reach the percentage of the final reference concentration

	time (hours) Decreasing Period					
	10%	Ratio	50%	Ratio	90%	Ratio
AlphaGUARD	2	1,0	2,5	1,0	3	1,0
Atmos12	2	1,0	2,5	1,0	3	1,0
Radon Scout	2	1,0	2,8	0,9	3,9	0,8
Tera	2,7	0,7	3,8	0,7	5,7	0,5
Radon Scout Home	3,4	0,6	5,7	0,4	7,6	0,4
Wave	4,4	0,5	14,6	0,2	25	0,1
Canary	2	1,0	16,2	0,2	>33	-

• Chamber opened: High ventilation rate

- Instant degassing: High Rn concentration variability
- AlphaGUARD: From 2400 Bq/m³ to 100 Bq/m³ in 2 hours
- Ratio (Ref/Monitor) decreasing with time
- Easy classification from slow to quick Response time

Response time analysis (Method 2): Relative Error analysis from reference monitor

time (hours)		
	Increasing Period	
Atmos12	4,5	
Radon Scout	4,5	
Tera	3,5	
Radon Scout Home	19	
Wave	>24	

- Relative error within ±10%
- Within 10% RE we assume that response/behaviour is the same for all devices
- Fluctuations outside the ±10% are due do intrinsic dispersion of the monitors

Response time analysis (Method 2): Relative Error analysis from reference monitor

Conclusions

- The stable period seems to be a good approach to evaluate accuracy of the monitors, as concentration fluctuations are minimised and intrinsic dispersion of the devices is shown.
- > Two methods were proposed to evaluate the response time
- Analysis of the final concentration percentage during concentration increase or decrease periods seems to be a reasonable method to evaluate response time.
- Response time for the different monitors is shown clearly from the radon concentration decrease period.
- > Relative Errors analysis has problems with values close to background

Thanks for your attention

Fuente et al. (2018).

Performance of radon monitors in a purpose-built radon chamber

10.1088/1361-6498/aad969