
Assessment of the Population-Weighted Radon Exposure from Geographically Based Data in Austria

Sebastian Baumann, Wolfgang Ringer, Valeria Gruber,

Oliver Alber Department for Radon and Radioecology / Radiation Protection

Content Radon Exposure

- > Overview
- Radon Survey and Modeling
- Population weighted radon exposure

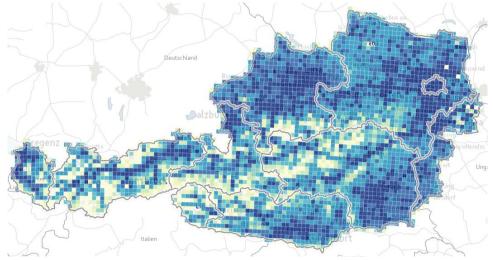
> What is the radon exposure of the public?

> What is the radon exposure of the public?

- ➢ For communication and comparison
- For decisions if there is a radon health risk in a country; and if yes, to what extend?
- ➢ for implementation of national radon policy (national reference level (RL), estimate number of homes above RL and cost of corrective actions, estimate the cost of the national radon programme, etc.)
- > for evaluating the impact of a national radon policy

Contributors Radon Exposure

> What is the radon exposure of the public?


Indoor radon concentrations in

- Homes
- Workplaces
- Public buildings
- Outdoor radon concentrations

> What is the radon exposure of the public?

 Using existing measurements from an extensive Radon Survey for producing a radon map.
 Additional information of population density and housing stock

Two types of radon surveys

Population-weighted vs. Geographically-based

- To estimate the average exposure
 - is there a radon health risk in a country; if yes, to what extend?
 - for implementation of national radon policy (national reference level (RL), estimate number of homes above RL and cost of corrective actions, estimate the cost of the national radon programme, etc.)
 - for evaluating the impact of a national radon policy
 - population-weighted survey by measuring indoor radon levels in randomly selected homes
- To identify radon priority areas (radon map)
 - to give priority to high radon areas in tems of risk communication, measurements, mitigation, preventive measures because resources are limited
 - more extensive survey
 - → geographically-based survey where homes are selected to obtain a minimum density of measurements per area unit chosen e.g. a grid square, an administrative unit

Design of the new Austrian indoor radon survey ÖNRAP 2 (2013 – 2019)

Purpose: Reliable delineation of radon priority areas

Geographically-based survey

- All populated areas should be uniformely covered with measurements ->
 1-3 dwellings per 2x2 km grid cell (depending on heterogenity of geology)
- One single measurement method:
 - Track etch detectors

800

700

600

500

400

300

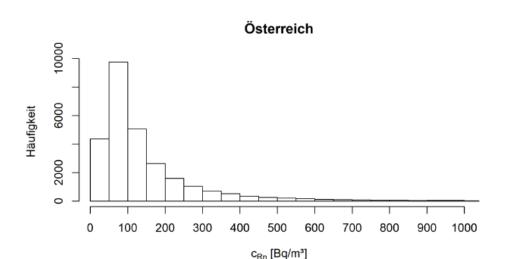
200

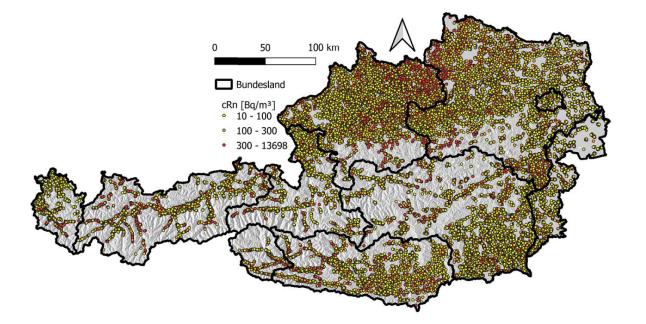
100

- 6 months (half winter, half summer time)
- 2 rooms (preferably ground floor or lowest inhabitated floor)

Gruber Valeria et al *The new Austrian indoor radon survey (ÖNRAP 2, 2013–2019): Design, implementation, results* Journal of Environmental Radioactivity, Volume 233, July 2021; <u>https://doi.org/10.1016/j.jenvrad.2021.106618</u>

Ref.: IAEA, BfS

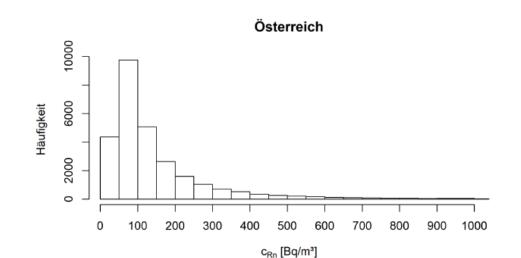


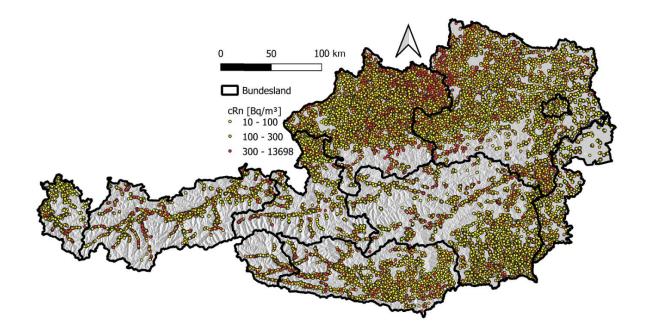


Results of the new Austrian indoor radon survey

Overview

- ~ 50.000 Measurements (~27.000 homes)
- Geographical representative
- Six month measurement time
- 2 most occupied rooms, preferred ground floor
- Building characteristics




Results of the new Austrian indoor radon survey

Overview

n	n	AM	Median	>100 Bq/m ³	>300	>1000
measurements	buildings	[Bq/m³]	[Bq/m ³]		Bq/m ³	Bq/m³
46.339	27.630	166	99	49 %	12 %	1 %

From the survey to the radon map Modelling

Geostatistical Modelling –> Generalised Additive Mixed Model (GAMM)

- Modelling the results of the Indoor Radon Concentration (IRC) in dependency of explaining factors:
 - Building characteristics & living habits
 - Geology
 - Spatial correlation
- Log-norm distribution assumed
- To evaluate influence of variables (building characteristics) \rightarrow stepwise forward selection with 5-fold cross validation

Fixed effects according to the relevant parameters (building characteristics)

Random effect (dwelling)

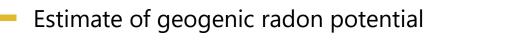
 $\log(IRC_{ij}) = \beta_0 + \beta_1 Z_{ij} + \ldots + \beta_m Z_{ij} + s(x_j, y_j) + \beta_0 Z_{ij} + \beta_0$

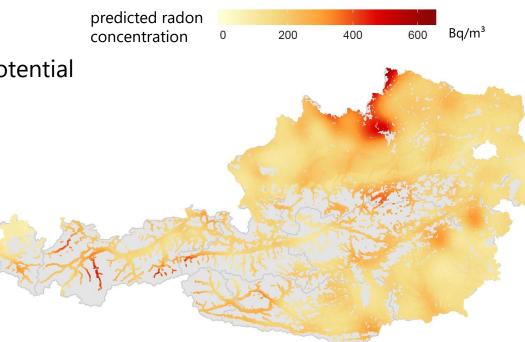
Intercept (Rn background level)

rest variation Smoothing function (thin plate regression splines), spatial intercept

Advantages of the modelling approach:

- Characterisation of areas with no or small number of measurements possible
- Takes into account
 - geology
 - building factors reflecting • geogenic radon potential
 - spatial correlations more • homogenic classification possible


+ allows assessment of population-weighted exposure !!!


Alber Oliver et al 2023 Modeling and predicting mean indoor radon concentrations in Austria by generalized additive mixed models

From the survey to the radon map

Prediction of radon concentration in a reference house

- Prediction of radon concentration (IRC) for reference house on 250 x 250 m grid (radon potential of the grid cell)
- Definition of reference house has strong impact
- Reference house representative for requirements for workplaces and for costefficient newly built houses
 predicted radon concentration
 200
 400
 Bg/m³

Folie evt. streichen

Variable	Characteristic		
earth-boundness	no		
year of construction	after 2000		
floor	0		
basement	no		
stone walls	no		
concrete walls	no		
usage of building	single family house		
number of adults	2		
low-energy house	no		
windows	tight		
foundation	full		
thermal retrofitted	no		
geological unit	assigned by coordinates		

The new Austrian Radon map

Delineation of Radon areas

Radon protection areas

- Predicted radon potential of municipality is above 300 Bq/m³
- Measurements in workplaces
 (groundfloor & basement) mandatory

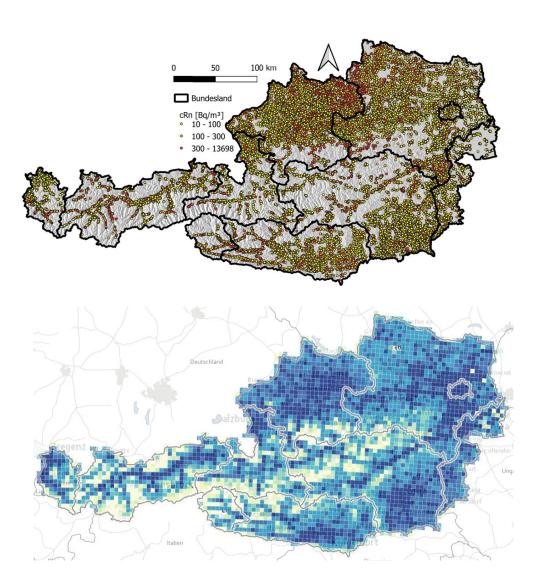
Radon prevention areas

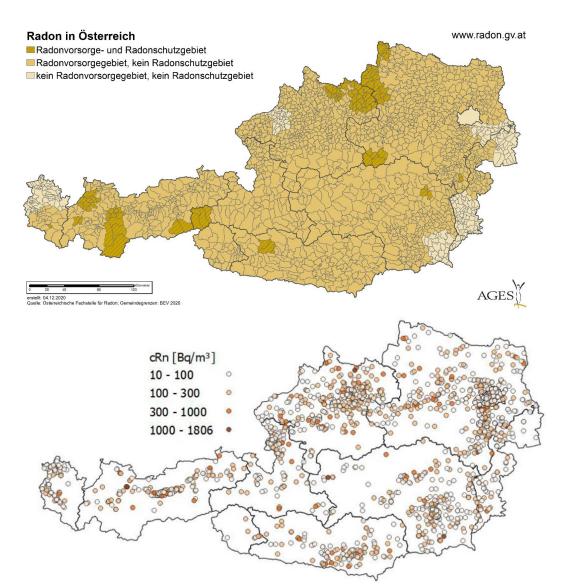
- Predicted radon potential of district is above 150 Bq/m³
- Preventive measures for new buildings mandatory

Radon areas in Austria

radon protection area & radon prevention area

- radon prevention area; no radon protection area
- no radon protection area, no radon prevention area


AGE


www.radon.gv.at

Radon exposure of the population

Population-representative distribution of radon indoors


AGES

Rn-concentration

Population-representative selection

AGES

- Collected data is geographically representative:
 - Underesampling of dense populated areas (e.g. citys)
 Overesampling of rural areas
- Generate population-representatve Radon data:
 - Additional data needed: population density and housing stock
 - Estimate mean of the population-representative Rn-concentration via model
 - Draw a population-representative sample out of the whole data set with respect to the estimated mean, the population density and the housing stock. (n = 1960)

Radon exposure of the population

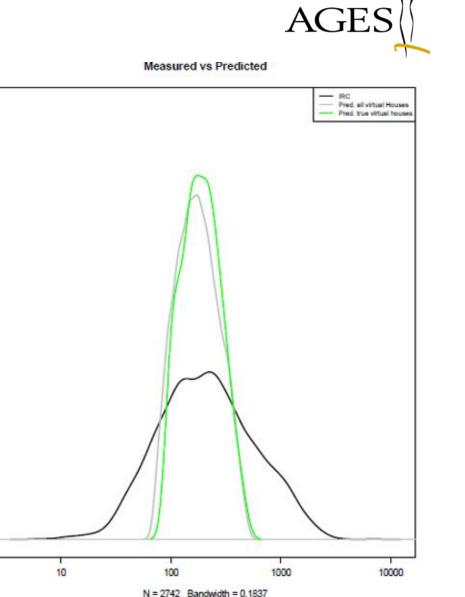
AGES

Population-representative distribution of radon indoors

Input data from survey as given above:

- radon concentrations in households
- characteristics of measured rooms and buildings (year of construction, floor, basement)
- location of dwelling
- Geology

-> need geographical distribution of households (from Statistics Austria on 10x10 km² grid) and their building characteristics (from ÖNRAP 1) - **year of construction, floor, basement**


- -> apply geo-statistical model GAMM
- -> calculate for every grid the radon level for all occuring different types of households
- -> weighting according to number of households per type and number of households
- -> drawing / random sampling of to get representative distribution

Drawing sample?

Population-representative distribution of radon indoors

- Target of model is mean radon concentration
- The tails of the distribution modelled poor
- Consequence: Statements like households
 > 300 Bq/m³ are not valid

Drawing a representative sample

20

0.8

0.6

40

0.2

0.0

Density

Drawing sample!

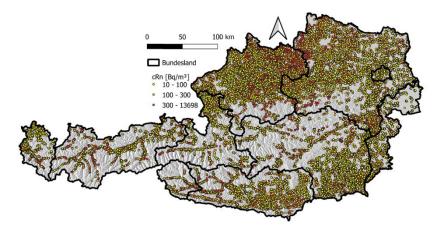
Population-representative distribution of radon indoors

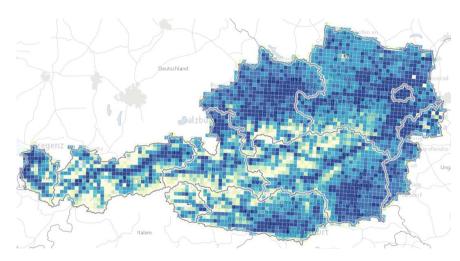
- Goal: Tails of distribution
- Random weigthed sampling
- For each federal state
- 500 repititions
- ~0.05 % of population
- No putting back
- Ground truth: Averages of model

Measured vs Predicted - RC 10 **Pred. ell virtual Houses** Pred. true virtuel house 0.8 9'0 Density 40 0.2 0.0 10 100 1000 10000

N = 2742 Bandwidth = 0.1837

Geographically/Population

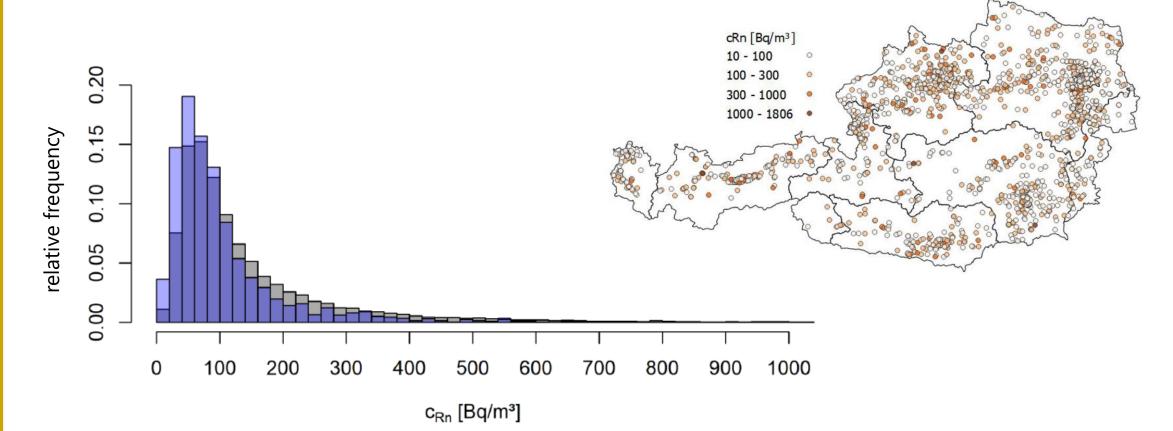

Results and findings radon survey


Raw data – geographically representative:

n	n	AM	Med	>100	>300	>1000
(meas.)	(dwell.)	[Bq/m³]	[Bq/m³]	Bq/m³	Bq/m³	Bq/m³
46.339	27.630	166	99	49 %	12 %	1 %

Considering population density and buildingstock –> population representative:

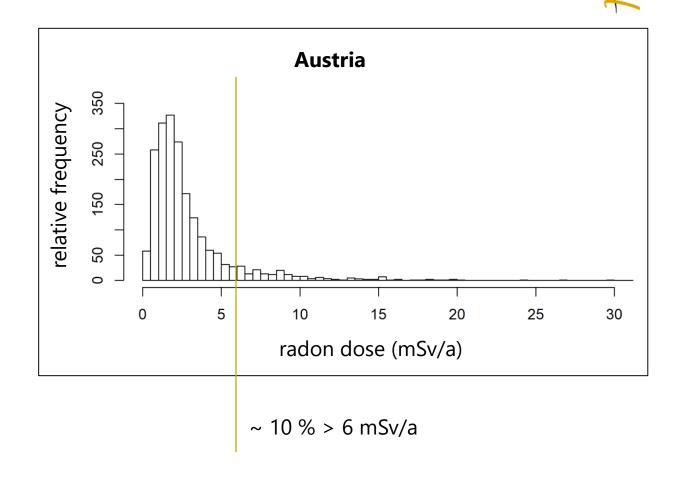
n (meas.)	n (dwell.)	AM [Bq/m³]	Med [Bq/m³]	>100 Bq/m³	>300 Bq/m³	>1000 Bq/m³
3912	1960	112	77	34 %	6 %	<<1 %
lower than from raw data because measurements in rural areas and predominantely at ground floor level			nd ~	~ 230,000 households ~ 500,000 people		



cRn [Bq/m³] 10 - 100 100 - 300 300 - 1000 1000 - 1806

Exposure

Population-representative radon distribution


- light blue: population-representative distribution
- gray: distribution of measured radon concentrations
- dark blue: overlap of distributions

Dose

From exposure to dose

- mean radon concentration (AM)
- dose conversion factor from UNSCEAR 2019
- equilibrium factor of 0.4
- indoor occupancy of 7500 h/a
- assumption of similar radon levels at workplaces
- dose from radon outdoors negligible

ø radon dose = 3 mSv/a
with
$AM = 112 Bq/m^3$
$DCF = 9 nSv/(h \cdot Bq/m^3)$
(UNSCEAR 2019)
F = 0.4
t = 7500 h/a (from ÖNRAP 1)
ø radon dose (ICRP137) = 5.6 mSv/a

Determination of Dose from Radon Limitations | Improvments

- not strictly population-representative but household-representative (measured radon concentrations reflect household but not an individual person)
- assumption of same radon levels at workplace than in dwellings
- re-assessment of occupancy (7500 h)
- more measurements / data from highly populated areas (cities)
- dose conversion factor from UNSCEAR or ICRP?

Austrian Agency for Health and Food Safety

Sebastian Baumann

AGES – Radiation Protection

Wieningerstrasse 8 A-4020 Linz T +43 50555 41907 sebastian.baumann@ages.at

www.ages.at

Copyright © 2023 AGES/Wolfgang Ringer

All rights reserved. The content is the intellectual property of AGES. You may use them for your private use only. All other types of use, including changes and edits, as well as transfer to third parties, are prohibited.