# CAN RADON IN DRINKING WATER BE USEFUL FOR PREDICTING THE GEOGENIC RADON POTENTIAL?

Filipa Domingos, PhD student @ University of Coimbra Pereira, A., Dias, L., Rodrigues, S., Alexandre, C., Simas, L.



#### 16<sup>TH</sup> GARRM, SEPTEMBER 19<sup>TH</sup>-21<sup>ST</sup> 2023

# CONTENTS

- 1. Motivation
- 2. Data overview
- 3. Distribution of radon concentration in drinking water
- 4. Radon concentration as a Geogenic Radon Potential predictor:
  - 4.1. Method and Metrics
  - 4.2. Receiver Operating characteristic curve analysis

#### 5. Final remarks



## SOURCE OF RADON IN DRINKING WATER



# INDOOR RADON DATA



### INDOOR RADON + WATER RADON DATA



# MANDATORY WATER QUALITY MONITORING



Data

#### **Monitoring requirements:**



COUNCIL DIRECTIVE 2013/51/EURATOM Parametric value: **1000 Bg/L (maximum)** 

DECREE-LAW No. 69/2023 Parametric value: **500 Bq/L** 

# MANDATORY WATER QUALITY MONITORING



#### **Monitoring requirements:**



COUNCIL DIRECTIVE 2013/51/EURATOM Parametric value: **1000 Bq/L (maximum)** 

DECREE-LAW No. 69/2023 Parametric value: **500 Bq/L**  Data

Traceability to a water source Water treatment Sampling/Analytical uncertainty Spatial and time variability

# NUMBER AND TYPE OF DATA

| Data Source: ERSAR            | 2016                                       | 2017 | 2018 | 2019 | Total |  |
|-------------------------------|--------------------------------------------|------|------|------|-------|--|
| Groundwater                   |                                            |      |      |      |       |  |
| Raw                           | 135                                        | 189  | 127  | 14   | 465   |  |
| Treated                       | 3648                                       | 3571 | 72   | 8    | 7299  |  |
| Surface water                 |                                            |      |      |      |       |  |
| Raw                           |                                            | 8    | 5    |      | 13    |  |
| Treated                       | 463                                        | 449  | 4    |      | 916   |  |
| Mixed (untraceable to source) |                                            |      |      |      |       |  |
| Treated                       | 426                                        | 352  | 2    |      | 780   |  |
| Total                         | 4672                                       | 4569 | 210  | 22   | 9473  |  |
| Groundwater                   | found below the surface                    |      |      |      |       |  |
| Surface water                 | inland water other than groundwater        |      |      |      |       |  |
| Raw water                     | water as found in nature                   |      |      |      |       |  |
| Treated water                 | water that undergoes any type of treatment |      |      |      |       |  |



# NUMBER AND TYPE OF DATA

| Data Source: ERSAR   | 2016                                       | 2017 | 2018 | 2019 | Total |
|----------------------|--------------------------------------------|------|------|------|-------|
| Groundwater          |                                            |      |      |      |       |
| Raw                  | 135                                        | 189  | 127  | 14   | 465   |
| Treated              | 3648                                       | 3571 | 72   | 8    | 7299  |
| Surface water        |                                            |      |      |      |       |
| Raw                  |                                            | 8    | 5    |      | 13    |
| Treated              | 463                                        | 449  | 4    |      | 916   |
| Mixed (untraceable t | source)                                    |      |      |      |       |
| Treated              | 426                                        | 352  | 2    |      | 780   |
| Total                | 4672                                       | 4569 | 210  | 22   | 9473  |
| Groundwater          | found below the surface                    |      |      |      |       |
| Surface water        | inland water other than groundwater        |      |      |      |       |
| Raw water            | water as found in nature                   |      |      |      |       |
| Treated water        | water that undergoes any type of treatment |      |      |      |       |



**Raw groundwater** (N = 47) **Treated groundwater** (N = 1804) **Treated surface water** (N = 67)



✓ Statistically significant correlations between 2016 and 2017 radon concentration by source

✓ Correlations are better for raw groundwater > treated groundwater > treated surface water

## **RAW VS. TREATED WATER**



y = 1,07x

 $R^2 = 0,70$ 

à

y = 1,95x

 $R^2 = 0,46$ 

3000

1500



120 km

1001 - 1805

Median values are not representative for the country.



Source: LNEG (2023)









# GRP PREDICTION USING WATER RADON DATA



Source: Pereira et al., (2022)

| Multiclass Receiver Operating Characteristic (ROC) curve analysis<br>using the One vs. Rest strategy |                                           |                    |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|--|--|
|                                                                                                      | Groundwater radon<br>concentration (Bq/L) |                    |  |  |
| Confusion matrix:                                                                                    | RC ≥ Threshold (1)                        | RC < Threshold (0) |  |  |
|                                                                                                      |                                           |                    |  |  |

| Geogenic<br>radon<br>potential | High (1)               | True positive                    | False negative<br>(type II error) |
|--------------------------------|------------------------|----------------------------------|-----------------------------------|
|                                | Other than<br>high (0) | False positive<br>(type l error) | True negative                     |

|                                                      | Selection of optimal classifier | Classification<br>power       |  |
|------------------------------------------------------|---------------------------------|-------------------------------|--|
| <b>Metrics</b><br>(Bossew, 2014; Robin et al., 2011) | Youden Index                    | Area under the<br>curve (AUC) |  |

## GRP PREDICTION USING WATER RADON DATA



## GRP PREDICTION USING WATER RADON DATA



| Data points<br><i>per</i> source | AUC          | Optimal<br>classifier<br>(Bq/L) | No. of water<br>sources<br>considered |
|----------------------------------|--------------|---------------------------------|---------------------------------------|
| All included                     | 0.84         | 30                              | 1702                                  |
| >1                               | 0.84         | 30                              | 1663                                  |
| >2                               | 0.92         | 71                              | 52                                    |
| >3                               | 0.90         | 21                              | 31                                    |
| >4                               | 0.91         | 336                             | 14                                    |
| >5                               | 1.00         | 46                              | 11                                    |
| >6                               | 1.00         | 46                              | 10                                    |
| >7                               | 1.00         | 115                             | 7                                     |
| >8                               | 1.00         | 115                             | 6                                     |
| >9                               | 1.00         | 115                             | 6                                     |
| >10                              | Unfeasible c | omputation (1 r                 | esponse level)                        |

# FINAL REMARKS

#### Distribution of Radon Concentration in mainland Portugal:

- ✓ Higher in Groundwater and Raw water (compared to Surface / Treated water)
- ✓ High spatial variability (related to geology), as well as temporal

#### Correlation between variables:

- ✓ 2016 and 2017 maximum RC by source
- $\checkmark$  Raw water and Treated water RC (N = 29!)
- ✓ RC and TGDR

#### Groundwater Radon Concentration for Geogenic Radon Potential Prediction:

- ✓ Classification power is good (AUC > 0.84);
- ✓ Higher classification power using raw water data and with higher N per water source
- RC threshold inconsistency (strong data dependency!)

# ACKNOWLEDGEMENTS

Water and Waste Services Regulation Authority (ERSAR)

Instituto do Ambiente, Tecnologia e Vida, Project FSE CENTRO-04-3559-FSE-000142

Laboratório de Radioatividade Natural, University of Coimbra

Fundação para a Ciência e a Tecnologia I.P./MCTES through national funds (PIDDAC) – UIDB/00611/2020 and UIDP/00611/2020, UIDB/05037/2020 and UIDP/05037/2020.



# THANK YOU FOR YOUR ATTENTION!

#### Filipa Domingos, PhD student @ University of Coimbra

Pereira, A., Dias, L., Rodrigues, S., Alexandre, C., Simas, L.



#### 16<sup>TH</sup> GARRM, SEPTEMBER 19<sup>TH</sup>-21<sup>ST</sup> 2023

## REFERENCES

- Batista, M.J., Torres, L., Leote, J., Prazeres, C., Saraiva, J. & Carvalho, J. (2013). Carta Radiométrica de Portugal (1:500 000). Laboratório Nacional de Energia e Geologia, ISBN 978-989-675-027-5.
- Bossew, P. (2014). Determination of radon prone areas by optimized binary classification. Journal of Environmental Radioactivity, 129, 121-132.
- Cinelli, G., De Cort, M. & Tollefsen, T. (Eds.), (2019). European Atlas of Natural Radiation, Publication Office of the European Union, Luxembourg, 2019.
- LNEG (2023). Dados harmonizados da Carta Geológica de Portugal, escala 1:1 000 000. Laboratório Nacional de Energia e Geologia I.P., https://inspire.lneg.pt/arcgis/services/CartografiaGeologica/CGP1M/MapServer/ WMSServer?request=GetCapabil ities & service=WMS&version=1.3.0.
- Pereira, A. & Domingos, F. (2020). Monitorização da radioatividade em água para consumo humano em Portugal Continental: Avaliação de risco. Coimbra.
- Pereira, A., Domingos, F., Sêco, S., Luís, G. (2022). Indoor radon risk assessment in mainland Portugal. 2nd HERCA Workshop on National Radon Action Plans, 21–23 June 2022, Lisbon.
- Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J., Müller, M. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77.