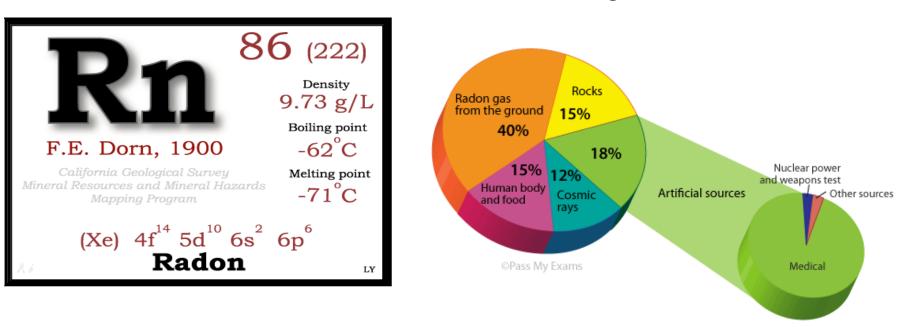


Determination of radon activity in well and natural spring water sources in the granite rich region of Central Anatolia, (Turkey)

Mehmet Erdogan^{1,*}, Oguzhan Altay Yönet¹, İsmail Genç¹, Kaan Manisa², A.Reha Botsalı³

¹Department of Physics, Faculty of Science, University of Selçuk, 42130 Konya, Turkey ²Department of Physics, Faculty of Arts and Sciences, University of Kütahya Dumlupınar, 43100 Kütahya, Turkey ³Department of Industrial Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey

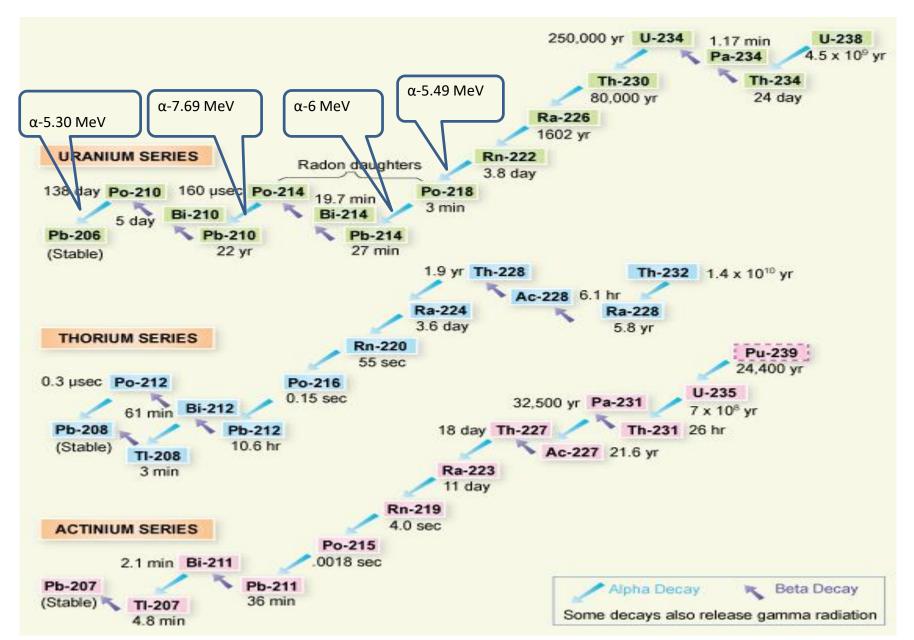
16th INTERNATIONAL WORKSHOP GARRM (on the GEOLOGICAL ASPECTS OF RADON RISK MAPPING) September 19th – 21st, 2023, Prague, Czechia

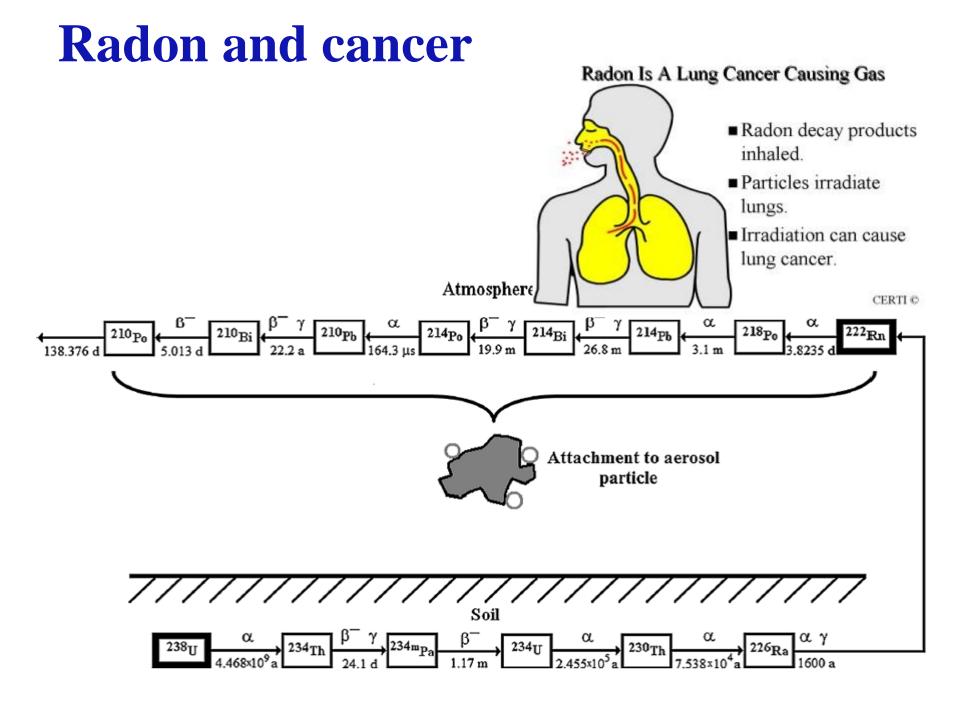

Radon and Geology

Material and Methods

Results

What is Radon?

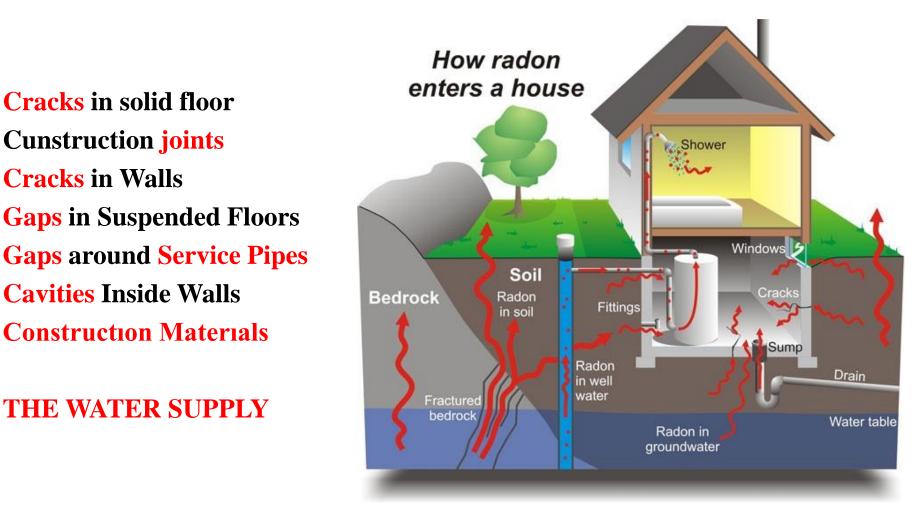

Background Radiation



Radon (Rn-222) is the first and most important natural source of the radiation which people are exposed.

Radon is **tasteless**, **odourless**, **colourless** and radioactive **noble** gas (is the heaviest known gas) that comes from naturally occuring uranium in the soil.

U-238 Natural Decay Chain



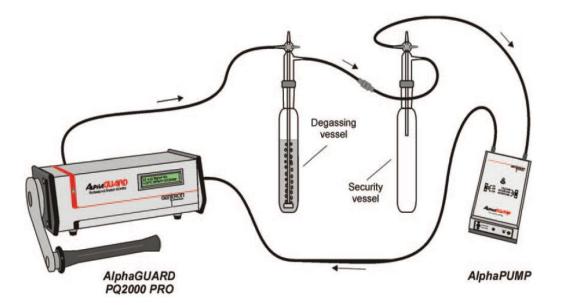
Radon and cancer

- For this reason, some national and international organizations make regulations on radon concentration for environmental health especially for cancer risk. Radon has been established to be a Group 1 and Group A human carcinogen, according to the classification used by the International Agency for Research on Cancer (IARC) and by the US Environmental Protection Agency (EPA), respectively.
- While the World Health Organization (WHO) recommends that the upper limit of water radon activity as 100 Bq/l, USEPA recommends it as 11.1 Bq/l.

How does Radon Enter a Home?

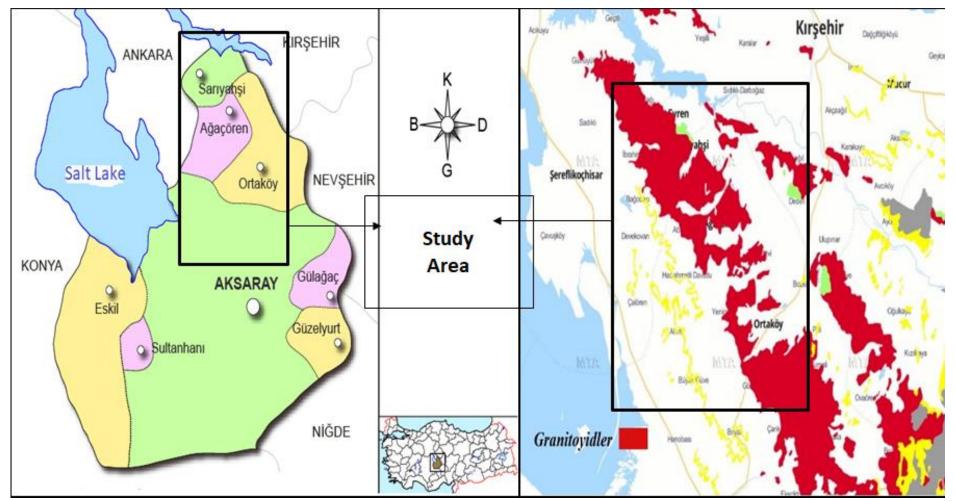
Radon in Water

Radon is solible in water and its solubility increases rapidly with decreasing temperature.

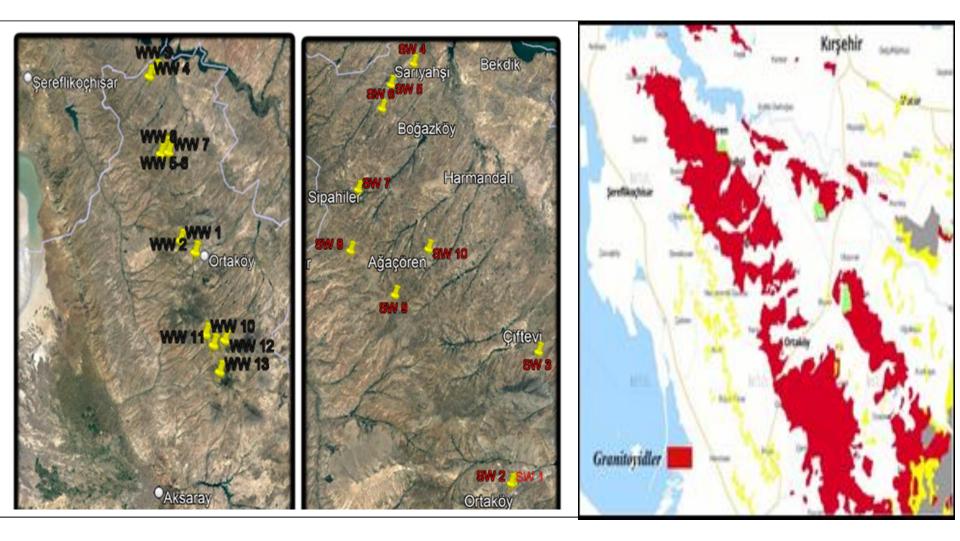

The radon gas later escapes from the water and goes into the air, raising the room's radon content. An average concentration of radon in water of 10 kBq.m⁻³ implies a contribution of 1 Bq.m⁻³ to radon in air.

- A high ²²²Rn potential has been reported in granites, metamorphic rocks and various types of sedimentary rocks.
- Acidic rocks like granites and rhyolites are characterized by higher radium concentration.
- Radon is usually present in signifcant concentrations in those groundwater that have been in contact with granite rocks, slates, as well as sandstone and limestone.

Materials and Methods Schematic view of the experimental set-up



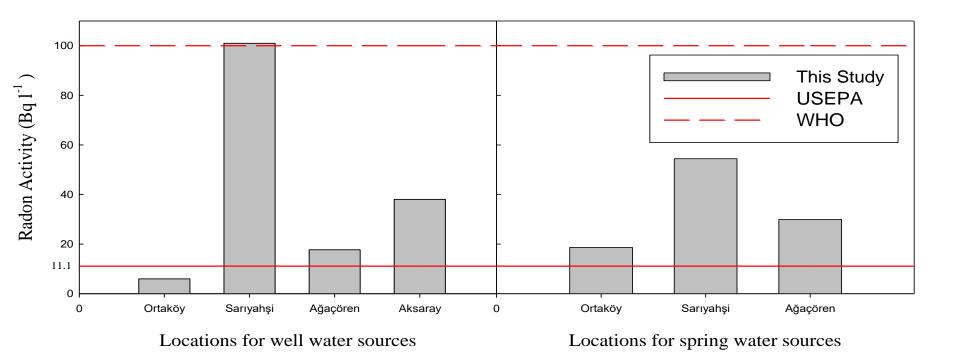
Water radon concentration measurements were carried out by using AlphaGUARD PQ 2000 PRO radon monitoring system.


Ingestion: 10 kBq m⁻³ × 60 l y⁻¹ × 10⁻³ m³ l⁻¹ × 3.5 nSv Bq⁻¹ = 0.002 mSv

Study Area

- Study area in the Central Anatolian Region of Turkey, on the E and SE of Ankara, there is a magmatic and metamorphic rocks assemblage known as "Central Anatolian Crystalline Complex".
- Central Anatolian Granitoids have monzogranite, quartz monzonite, granite and granodiorite composition in general.

Study Area



RESULTS

Sample No	Location	Coordinates	Deep (m)	Radon Activity (Bq/l)	AED for Ingestion (mSv)
WW1	Ortaköy	38 ⁰ 44' 11'' N, 33 ⁰ 59' 11'' E	60	0.83±0.09	0,0001
WW2	Ortaköy	38° 43' 28" N, 34° 01' 34" E	90	11.10±0.44	0,0023
WW3	Sarıyahşi	38° 59' 19" N, 33° 51' 13" E	102	171.67±10.59	0,0360
WW4	Sarıyahşi	38° 58' 35" N, 33° 50' 29" E	24	30.27±7.20	0,0063
WW5	Ağaçören	38° 52' 20" N, 33° 54' 47" E	17	13.67±3.45	0,0028
WW6	Ağaçören	38° 52' 20" N, 33° 54' 47" E	30	22.36±0.36	0,0046
WW7	Ağaçören	38° 51' 58" N, 33° 55' 15" E	72	5.93±0.53	0,0012
WW8	Ağaçören	38° 51' 37" N, 33° 54' 10" E	35	25.37±1.15	0,0053
WW9	Ağaçören	38° 52' 29" N, 33° 54' 39" E	24	21.25±1.92	0,0044
WW10	Aksaray-Çekiçler	38° 36' 22" N, 34° 05' 03" E	40	103.56±7.71	0,0217
WW11	Aksaray-Borucu	38° 35' 35" N, 34° 06' 24" E	60	28.09±3.90	0,0058
WW12	Aksaray-Yanyurt	38° 36' 17" N, 34° 07' 53" E	52	2.91±1.59	0,0058
WW13	Aksaray-Koyak	38° 33' 21" N, 34° 07' 55" E	32	17.60±2.43	0,0058

Sample No	Location	Coordinates	Radon Activity (Bq/l)	AED for Ingestion (mSv)
SW1	Ortaköy	38 ⁰ 44' 08'' N, 34 ⁰ 02' 15'' E	18.63±1.43	0,0039
SW2	Ortaköy	38º 44' 11" N, 34º 02' 21" E	25.01±2.96	0,0052
SW3	Ortaköy	38 ⁰ 49' 26'' N, 34 ⁰ 02' 26'' E	12.26±0.69	0,0026
SW4	Sarıyahşi	38 ⁰ 59' 42'' N, 33 ⁰ 51' 35'' E	17.45±1.04	0,0036
SW5	Sarıyahşi	38 ⁰ 58' 35" N, 33 ⁰ 50' 29" E	143.70±2.53	0,0301
SW6	Sarıyahşi	38 ⁰ 57' 30'' N, 33 ⁰ 50' 16'' E	27.16±4.29	0,0057
SW7	Sarıyahşi	38 ⁰ 53' 58'' N, 33 ⁰ 49' 53'' E	29.50±3.70	0,0061
SW8	Ağaçören	38 ⁰ 51' 28'' N, 33 ⁰ 50' 12'' E	53.85±0.76	0,0113
SW9	Ağaçören	38 ⁰ 50' 11'' N, 33 ⁰ 53' 22'' E	22.95±1.03	0,0048
SW10	Ağaçören	38 ⁰ 52' 20'' N, 33 ⁰ 54' 47'' E	12.91±0.63	0,0027

COMPARISION WITH INTERNATIONAL STANDARTS

Comparision with Other Studies

Water Type	Radon Concentration (Bq/L)	Country
Well water	0.42-28.82	Turkey (Afyon)
Well water	1.46–63.64	Turkey (Bursa)
Well water	1.44–27.45	Turkey (Konya)
Well water	0.01-11.51	Poland
Well and Spring water	0.91–49.6	Lebanon
Well water	1.78–39.75	Mexico
Hot Spring Water	3.18 - 46.9	India (Bakreswar)
Hot Spring Water	18.64-8507.48	Tailand (Gulf)
Spring Water	<2.5 - 274	Slovakia
Spring Water	0.34-341	Kosovo
In This Study(Well-Spring)	0.83-171.67	Turkey (Central Anatolia)

Results

- The most of the water sources we analyzed have higher radon activity levels than USEPA standards, yet only a few are above WHO standards.
- Although it is expected to have a positive correlation between underground water depth and radon concentration, this is not seen in our data. This can be explained by the variation in the surface structure of the water sources.
- It can be interpreted that groundwaters with low radon concentration have less interaction with granitic rocks and/or aquifers are units with different composition and origin, but groundwaters with high radon concentration (SW5, SW8, WW3 and WW10) interact with granitic rocks for a longer time.

References

- Chaudhuri, H., Das, N.K., Bhandari, R.K., Sen, P., Sinha, B. 2010. Radon activity measurements around Bakreswar thermal springs. Radiation Measurements, 45(1), 143-146.
- Ngansom, W., Rodphothong, D., Itthipoonthanakorn, T., Niyomdecha, S., Durrast, H., Yongprawat, M. 2023. Hydrogeological environments and radon activities of saline geothermal hot spring sites located along eastern and western coastlines of southern Thailand. Journal Of Contaminant Hydrology, 253, 104105.
- Eckertova, T., Mullerova, M., Holy, K. 2019. Radon Activity Concentration in Waters of Springs in Selected Areas of Western Slovakia. Radiation Protection Dosimetry, 186(2-3), 413-418.
- Yalim, H. A., Akkurt, I., Ozdemir, F. B., Unal, R., Sandikcioglu, A. and Akkurt, A. The measurement of radon and radium concentrations in well water in the Afyonkarahisar area of Turkey. Indoor Built Environ. 16(1), 77–81 (2007).
- Tarim, U. A., Gurler, O., Akkaya, G., Kilic, N., Yalcin, S., Kaynak, G. and Gundogdu, O. Evaluation of radon concentration in well and tap water in Bursa, Turkey. Radiat. Prot. Dosim. 150, 207–212 (2011).
- Kochowska, E., Mazur, J., Kozak, K. and Janik, M. Radon in well waters in the Krakow area. Isotopes Environ. Health Stud. 40, 207–212 (2004).
- Abdallah, S. M., Habib, R. R., Nuwayhid, R. Y., Chatila, M. and Katul, G. Radon measurements in well and spring water in Lebanon. Radiat. Meas. 42, 298–303 (2007).
- Villalba, L., Sujo, L. C., Cabrera, M. E. M., Jimenez, A. C., Villalobos, M. R., Mendoza, C. J. D., Tenorio, L. A. J., Rangel, I. D. and Peraza, E. F. H. Radon concentrations in ground and drinking water in the State of Chihuahua, Mexico. J. Environ. Radioact. 80, 139–151, (2005).
- Erler, A. ve Bayhan, H., 1995. Orta Anadolu Granitoyidlerinin Genel Değerlendirilmesi ve Sorunları, Yerbilimleri Journal, 17, 49-69.
- UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation), *Sources, effects and risk of ionizing radiation*. United Nations, New York, 2000.
- United States Environmental Protection Agency (USEPA). National Primary Drinking Water Regulations, Radionuclides, Proposed Rules; 1991. (Las Vegas: USEPA).
- The World Health Organization (WHO). Guidelines for drinking water quality;1993. (Geneva: WHO).
- Saphymo, 2008. *Determination of the radon concentration*. AquaKIT manuel. Page:13.
- URL, <u>http://cografyaharita.com/turkiye_mulki_idare_haritalari5.html</u>, 19.04.2023.

Thank you for your attention...

Peace at the home peace in the world... Mustafa Kemal ATATÜRK